CONTINUITY AND 5
DIFFERENTIABILITY

Do not worry about your difficulties in mathematics.
I assure you that mine are greater.
— Albert Einstein

The last thing one knows when writing a book is what to put first.
— Blaise Pascal

5.1 Introduction

We introduced the idea of limit in standard XI. An intuitive approach and graphical
understanding helped us to grasp the idea of limit. At several places, we mentioned the word
‘continuous’. What is a ‘continuous function’ ? We will now try to learn the concept of continuity
which is very useful to study limits and it links limits and differentiability. Look at the graph of

fx)=1[x], x € R.
‘We cannot draw the graph of the function Y
without lifting the pencil from the plane of the

3 F e
aper. At eve oint on the graph, with
pap POt on e 8P 2 s
integer x-coordinate, this situation arises. The .
same is the situation with the graph of signum X
e ——— >
function 3 -2 .10/ 1 2 3
om0 -1
fx) = -1 x<0 >
0 x=0 La
1 x>0 ¥
Figure 5.1

At x = 0, the graph ‘jumps’.
Here lim f(x)=—1and lim f(x)=1.
x— 0+

x— 0

So, lim f(x) does not exist. In the
x—>0

example of f(x) = [x] also, we infer from the
graph, lim [x] =0, lim [x] = 1.
x = 1- 1

x— 1+

lim [x] does not exist.
x—1

Figure 5.2
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5.2 Continuity

x* -4

Consider the function f(x) =) —— x#2
5 x=2
Hence, f(x) = |x + 2 x#2
5 x=2

o Here, the graph of the function consists of
(AB — {P}) L {Q}

-4
im f(x) = lm f(x)=4 2
x = 2— x— 2+
lim f(x)=4
*=2 Figure 5.3
But f(2) =5

lim f(x) # f(2)
x—2

Here also the graph of f(x) cannot be drawn without lifting the pencil from the plane of the
paper. This is the idea of continuity. The graph ‘breaks’ or is ‘not continuous’.

Let us now give a formal definition.

Continuity : Let f be a function defined on an interval (4@, b) containing ¢. ¢ € R.

If lim f(x) exists and is equal to f(c), then we say f is continuous at x = c.
xX—=>C

In other words, if lim f(x) and lim f(x) exist and are equal to f(c), we say f is
x—=Ct+ x—=C—

continuous at x = c.
fis continuous at x = ¢ < Ilim f(x) and lim f(x) exist and

x—=c+ X —5C—
im f(x) = lim f(x)=/f(c).
x—=ct x—=Cc—

If f is not continuous at x = ¢, we say f is discontinuous at x = c.
That f is discontinuous at x = ¢ in a domain may occur in one of the following situations.

(1) lim f(x) or lim f(x) does not exist.
x—>ct+ x—>Cc—

(2) lim f(x) and lim f(x) exist but are unequal.
x—=ct x—C—

(3) lm f(x) and HLm f(x) exist and are equal.
x—>ct+ x—C—
ie. lm f(x) = lm f(x) = lm f(x)

x—ct x—C— x—>cC
but f is not defined for x = ¢ or limc Fx) #f(o)
X —>

If £ is defined at an isolated point, we say it is continuous at that point. Consequently a function
defined on a finite set {x;, x,, x3,..., X,,} is continuous.

We say f is continuous in a domain, if it is continuous at all points of the domain.

If f is defined on [a, b], then f is continuous on [a, b] if

(1) fis continuous at every point of (a, b)

(2) lim f(x) = f(a) (f is not defined for x < a)
x—a+t

CONTINUITY AND DIFFERENTIABILITY 139

“



—

3) hnll) fx) = f(®) (f is not defined for x > b)
x—>b—

Example 1 : Examine the continuity of f: R = R, f(x) = 2x — 4 at x = 3.

Solution : f(x) = 2x — 4 is a polynomial in x.

Y

lim f(x) = im (2x—4)=2-3-4=2

x—3 x—3
fG) =2-3—4=2
I f() = ()

f is continuous at x = 3.

The graph is a straight line and it is
‘unbroken’.

Example 2 : Examine continuity of f : R — R,

Y
f(x) = x% at x = 2. A
6..
Solution : lim x) = lim x2=4, 2) =4
x—>2f( ) x—2 7@ @2Hy 41 e
(f (x) = x? is a polynomial) 24
. — e i X
xllr_>n2 S =52 -6 -4 20 22 4 6
fx) = x2 is continuous at x = 2. 44
The graph is ‘continuous’. + 6
v
Figure 5.5

Example 3 : Is f: R = R, f(x) = | x| continuous on R?

Solution : Here, we have to examine
continuity of | x | on the domain.

f(x)=|x|={ x x20

—x x<0
E > X
Let ¢ > 0. For some 0 > 0,
we can have ¢ — 0 > 0 (let8=-g-) 4
f@) =|x|=xin(c— 0, c+ J) c— 98>0 P
lim f(x)= Lm x=c, f(c)=|c|=c(c>0)
r—oe x—oc Figure 5.6

lim f() = f()

fis continuous for all ¢ > 0
Let ¢ < 0. There exists some & > 0 such that ¢ + 0 < 0.
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f&x)=|x|=—xin(c— 8, c + O) c+3d <0
lim f(x) = m (—x) = —¢, f(c) = |c| = —¢ (c<0
X—>C XxX—>C

im f(x) = f(c)
x—>c¢

f is continuous for all ¢ < 0.

im f(x)= lim |x|= lm x=0 x>0
x— 0+ x— 0+ x— 0+

im f(x)= lim |x|= lm —x=0 x < 0)
x—0- x—0- x— 0-
fO@=]0]|=0

Jim ) =£© =0

fis continuous at x = 0.
fis continuous for all x € R.

Example 4 : Discuss the continuity of constant function f(x) = k£ on R.

Solution : For ¢ € R, lim f(x) = lim k =k = f(c) (lim k = k)
X—>cC xX—>cC

Xr—=c

A constant function is continuous on its domain.

Example 5 : Discuss the continuity at x = 0.

f(x) = B+x2+x+1 x#0
5 x=0
Solution : lim f(x)= lm B3 +x2+x+1)=1 (limit of a polynomial)
x—0 x>0
f(©) =5
lim £ (x) # £(0)
x—0

fis discontinuous at x = 0 Y

Example 6 : Examine the continuity of the identity
function on R.

Solution : Here f(x) = x.

—t—>X
Let a € R. 4 6
im f(x) = lim x = a = f(a)
x—a xX—a

The identity function is continuous on R.

Figure 5.7
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Example 7 : Discuss the continuity of f(¥) =+, x € R — {0}.

Solution : f(x) = % is a rational function.

Let ¢ # 0.

lim 1 .
lim === =41
x—)cf(X) lim x c

xX—>c

@ =1
lim f) =1 =1()
X—=>cC
fis continuous for all ¢ € R — {0}.

Note : For x =0, f(x) = % is not defined. Let us study behaviour of f(x) near 0.
Let x > 0.

x 0.1 0.01 0.001 10™
) 10 100 = 102 | 1000 = 103| 107

As x = 0+, f(x) increases unboundedly.
In such a case we say f(x) —> oo as x — 0+. We do not write ]im0+ f(x) = oo,
x—

lim £(x) does not exit.
x>0+

Limit of a function is a real number. oo is not a real number or it is a member of extended real
number system.

Let x < 0.

x |—01| —0.01 —0.001 —10™
f(x)| —10 |—100 =—102|—1000 = —103| —10”

Here as x decreases f(x) decreases and
as x —> 0—, f(x) —> —oo.
Again lim f(x) = —oo is not to be written.
x—>0-

lim f(x) does not exist.
x— 0

Example 8 : f(x) = L, x # 0. Discuss continuity for x € R — {0}.

lim 1
: . T 1 _ x> e _ _1
Solution : Let ¢ # 0. xhi)nc fx) = xllEc 2 _h_x)n Pl
x c
fis continuous for x € R — {0}
. = lim - i
Note ¢ Forx = 0, Jm 2 does not exist. i . i
; 5 o 5
=7 > oo asx — 0.
x
x —0.1 0.1 —0.01 | 0.01 |*10™ 5
f(x) 100 100 10000 | 10000 | 10%* Figure 5.9
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f(x)={x+3 x<2

3 —x x=22 atx € R. T

Solution : Let a < 2. So f(x) =x + 3 in
some interval around a.

lm fG)= m (x+3)=a+3=/(a)

fis continuous for all x € R, with x < 2. 4

Let a > 2. So f(x) = 3 — x in some interval T
around a. 1

f@=3—a N
lim f(x) = lim 3 —x)=3 —a = f(a)
x—a x—a

fis continuous for all x € R, with x > 2.

Leta=2. lim f(x)= lm (x+3)=35
x—2- x—2—
i = lim — %) =
x]i)1112+f(x) x_)2+(3 x) =1
lim £ (x) does not exist.
x—>2

f is continuous for all x € R except at x = 2.

©3)

“

Example 9 : Examine the continuity of Y

x <2

[Note : Generally, f is continuous at all points where possibly formula for f(x) changes or its

graph is in transition stage.]
Example 10 : Find points of discontinuity of
fx)=(rx+1 x>2
0 x=2
1 —x x<2
Solution : As per above note and a look at
the graph of y = f(x), it is clear that f is continuous
at all x € R except at x = 2 possibly.

L f@= Im Q-x=1-2=-1

x—2-

lim fx)= lm x+1)=2+1=3
-2+ x—2+

13

lim  £(x) does not exist. Figure 5.11
x—2

f is discontinuous at x = 2.

Example 11 : Prove that f(x) = { x—1 x<1

1 —x x > 1 is continuous on R — {1}.

Solution : Let a < 1. So f(a) = a — 1.
For some O > 0, we can have a + & < 1.
Letx€ (a— 8,a+ 0). f) =x—1
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im fx)= lm x—-1)=a—-1=f(a Y
XxX—>a xX—>a
f is continuous for ¢ € R with a < 1.

Leta>1.Sof(a)=1—a 2

For some & > 0, we can have a — & > 1

Let x € (@ — O, a + ). Hence x > 1. = —> X
L@ =1-x N 3
lim fx)= Iim (Q1-x)=1-—a=f(a)
xX—a+ xX—>a+

f is continuous for all a € R such that a > 1.
fis continuous on its domain.

Figure 5.12
Example 12 : If f(x) = x—1 x<1
0 x=1
1—x x> 1

Examine continuity of f.
Solution : As seen in example 11, fis continuous for all x € R, x # 1.
im f(x)= lim (x—-1)=0, lim fGx)= lm (1—-x)=0
x—1- x— 1+ x—= 1+

x—1-
fM=0
fis continuous for x = 1.
f is continuous on R.
Note : Isnot f: R >R, f(x)=—x—1]|7?
Example 13 : If f(x) = ( x+ 2 x<0
2 —x x>0 Y
k x=0
determine & so that f is continuous on R.
Solution : Looking at the graph and since
fx)y=2—xfor x > 0 and f(x) = x + 2 for
x < 0 are linear polynomials, f is continuous
for all x € R — {0}.
lim f()= lm (x+2)=2
x— 0-

x—0- - -3
im f()= lm @-x=2 v
x— 0+ x— 0+ Figure 5.13
lim f(x) = 2
x—0
In order that f is continuous at x = 0 also, ]imo f(x) =2 = f(0) is necessary.
x—
SO =k=2

If k = 2, fis continuous for all x € R.

Example 14 : Prove that a polynomial function is continuous.

Solution : f(x) = ax"” + a, _ X"~ L+ + ay, a, € RE=0,1,2,.,na #0is a
polynomial.
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We know lim x" = g”

x—>a

lim a; = q; (limit of a constant function)
xX—a

Also lim (fi(x) + fo(x) +...+ f,(x)) = Lm fi(x) + lm f,(x) +...+ lim f(x)
x—a x—a x—a x—>d

Now lim f(x) = lim (gx" +a, _;x" " ! +.+ ap)
xX—a

xX—>a

= lim g, lim x" 4+ lm q, |, lim x»~ 1 4+ 4+ lim gq,

xoa "xoa xoa x>a x>a
_ -1
=a,a’+a,_a +.+ a,
= f(a)

A polynomial function is continuous for all x € R.

Example 15 : Prove f(x) = [x] is continuous at all x € R except at all integers.
Solution : f(x) = ( e e,

.........

-1 —-1<x<90
< 0 0<x<1
1<x<2

.........

o

fis a constant function in any interval (n, n + 1) where n € Z.

f is continuous in all intervals (n, n + 1) i.e. at all x € R — Z.
Nowf(x)={n—1 n—1<x<n

n n<x<n+1

Letx=nne Z

We can choose & > 0 such that n — 1 <n — & < n. (In fact 0 < & < 1)
xli)n:l_f(x)=x]i)n;_n—l=n—1 (x € (n — 9, n)
Choose & >0sothat n<nmn+ O <n+1 . 0<d<d
lim f(x)= lm n=mn (x € (n, n + d))
X —> n+ x = n+
lim f(x) does not exist. (See figure 5.1)
XxX—n

fis discontinuous for all integers.
f(x) = [x] is continuous on R — Z and discontinuous for all » € Z.
Example 16 : Find %, if the following function is continuous at x = 2
fx) = kx + 3 x<2
{ 7 x> 2
Solution : lim f(x) = lm (kx + 3)=2k+ 3
x—2—

x—2-

im fx)= lm 7=7

x— 2+ x— 2+
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lim f(x) exists if 2k +3 =7 ie. k=2

x—2
Fork=2,f2)=2-2+3=7

lim f(x) =7 =f(2)
x—2

fis continuous at x = 2, if £k = 2.

Example 17 : Find a and b so that the following function is continuous.

fx) = 3 x<1
ax+b 1<x<3
7 x=23

Solution : fis a constant function except for x € (1, 3)
fis a linear polynomial in (1, 3). So it is continuous function.
Hence, f is continuous for x € R — {1, 3} and in (1, 3) except for possibly x = 1 and 3.
im fxX)= lm (ax+b)=a+b, Ilm f(x)= lim 3 =3
1 x— 1+ x—1-

x— 1+ x—1-
Since f is required to be continuous at x = 1, lim f(x) must exist.
x—1

lim f(x) = lm f(x)
x—1-

x— 1+

a+b=3 (i)
lim f(x)= lm (ax+ b)=3a+ b, lim f(x)= lim 7 =7

x—3— x— 3- x— 3+ x— 3+

Since f is required to be continuous at x = 3, lim f(x) must exist.
x—>3

xli)m3+f(x) N x]i)mS— J®)
S 3a+b=7 (ii)
Solving (i) and (ii), a =2, b= 1. Also lim f(x)=3, lim f(x)=7.
x—1 x—3
Now, /(1) = 3, lim f@x) =3 =7(1)
x—1
SB)=7, lim f@x)=7=f(@3)
x—3

If a=2 and b = 1, f is continuous on R.
Example 18 : Find a and b, if following function is continuous at x = 0 and 1.
fx) = x+a x<0
2 0<x<1
bx—1 1<x<2

Solution : lm f(x)= lm (x +a)=a
x—0- x — 0-

lim f(x) = lm 2 =2,

x— 0+ x— 0+

Since f is continuous at x = 0, lim f(x)= Im f(x)
x— 0- x— 0+

a=2. Also f(0) =2
lim f(x) =2 =7(0)
xX—-0
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Taking a = 2, f is continuous at x = 0.

lim f(x)= lm 2 =2
x—1-

x—1-

im f(x)= lm (bx—1)=5—1
- 1+ x =1+

Since, f is continuous at x = 1, lm f(x) = lm f(x)
x =1+ x—1-

b—1=2
b=3

Also, f()=b—1=3—1=2
lim f(x) =2 =f(1)
x—1

Taking a = 2 and b = 3, f is continuous at x = 0 and x = 1.

5.3 Algebra of continuous functions
The concept of continuity is formulated in terms of limit. Hence, just like working rules of limit,

we can have working rules for continuity of f+ g, X g, %, etc.

Theorem 5.1 : Let f and g be continuous at x = ¢ and ¢ € (a, b) for some interval (a, b).
Then (1) f + g is continuous at x = c.
(2) A&f is continuous at x =c. kK € R
(3) f — g is continuous at x = c.

(4) f X g is continuous at x = c.

(5) % is continuous at x = c if g(c) # 0. k € R

(6) {- is continuous at x = c if g(c) # 0

lim f(x) = f(c) and lim g(x) = g(c) as f, g are continuous at x = c.
xX—c xX—>cC

(1) lm (f+ g)x) = xﬁglc(f(X) + g) = xlill)lcf(X) + lim g(x»)

XxX—>cC X—>C
= f© + g©
= (f+ gXo)

f+ g is continuous at x = c.

(2)  lim (AH(x) = xﬁgl kf (x)

X —>cC

= lim £ lLm f(x)

x—>c x—c
= k()
= (k' X©)

kf is continuous at x = c.
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(3) If k=—1, —g is continuous at x = ¢ as g is continuous.

f+ (—g) = f— g is continuous at x = c.

(4) Im (fX g)x) = xlii)ncf (x)g(x)

X—>C

lim f(x) lim g(x)

x—>c x—>c
= f(o) gl
= (X g)¢)

f X g is continuous at x = c.
i lim &
. X—>C
&) 1111)1 (;)(x) = Tm e &) # 0
X (4

lim g(x)
X—>C

k
g(c)

&) # 0)

k . .
? 1S continuous at x = c.

f
© (Ho = ()
Taking k£ =1 in (5), % is continuous at x = c.
1) _ L . _
f X~ ) = is continuous at x = c.
or

f)

lim <5

xX—=>cC

lim (%)(x)
x—>c
lim f(x)
X—->cC

lim g(x)
x->c

- L9 @) = 0)

(4o

is continuous at x = c.

L
]

Some Important Results :

(1) A rational function is continuous on its domain.
P(x)

h(x) = PTES) is a rational function, where p(x) and g(x) are polynomial functions and g(x) # 0
. p(x)
lim A =
x—a *) x—>a 9%
lim p(x)
xX—->a
= lim g(x)
xX-a
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q@)

h(a)

.. his a continuous on its domain.

(2) sine function is continuous on R.
We assume following results studied last year

lim sinx = 0, lim cosx = 1
x>0 x>0

leta€e R Letx=a+ h,sothatasx > a, h —> 0

lim sinx = lim sin(a + h)
x—a h—>0

= lim (sina cosh + cosa sinh)
h—0

= sina lim cosh + cosa lim sinh
h—>0 h—0

= sina-1+ cosa-0
= sina

lim sinx = sina
XxX—>a

.. sine function is continuous for all x € R.

(3) cosine function is continuous on R.

letae R-Letx=a+ h Asx > a, h —> 0

lim cosx = lim cos(a + h)
Xx—a h—0

lim (cosa cosh — sina sinh)
h—>0

= cosa lim cosh — sina lim sinh
h—>0 h—>0

= cosa-1 — sina-0
= cosa

lim cosx= cosa
XxX—>a

.. cosine function is continuous for all x € R.

(4) tan function is continuous :

tanx=g2’;fc,xe R—{@k—DE |ke z}

sine is continuous for x € R.

cosine is continuous for x € R.

cosx =0 & x € R—{(2k—1)%|ke z}

(g(@ # 0)

.. By working rule of % for continuous functions fand g, zar function is continuous on its domain.
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(5) Continuity of Composite Function :
Let f: (a b) = (¢, d)y and g : (¢, d) = (e, ) be two functions, so that gof is defined.
If f is continuous at x; € (a, b) and g is continuous at f(x;) € (c, d), then gof is
continuous at x; € (a b).

According to the rule of limit of composite functions (std XI, semester II).

lim g(f(x)) = g(_im (f(x)) = g(f(x)))
x = x x— x
gof is continuous at x = x;.

Example 19 : Prove that x — [x] is discontinuous for all » € Z.
Solutionm : f(x) = ( ... ...

X 0<x<1
{ x—1 1<x<2
x—2 2<x<3

For any n € Z
lim f(x)= lim (x—[x])

X —>n— X —>n—

lim (x—(n—1) (For0<d<1,x€ (n— 8 n) Figures.14

X —>n—
=n—(m-—1)
=1
and f(n) =n—[n]=n—n=20

lim f(x)#f(n) Vne Z
x—n—

f(x) = x — [x] is not continuous for n € Z.
Note : On intervals (0, 1), (1, 2),... etc. f(x) = x — [x] is continuous. Let if possible, x — [x]
be continuous for » € Z. g(x) = x is continuous on R.
f(x) =x — [x] and g(x) = x both are continuous on R.
gx) — f(x) = x — (x —[x]) = [x] is also continuous on R. But [x] is discontinuous for
n € Z. So f(x) = x — [x] is not continuous for » € Z.
Example 20 : Prove sir | x| is continuous on R.
Solution : f: R =2 R, f(x) =|x| and g : R — R, g(x) = sinx are continuous.
gof : R = R, (gof }x) = g(f(x)) = g(| x|) = sin| x| is continuous for all x € R.
Example 21 : Prove f: R > R, f(x) =| 1 — x +|x]|| is continuous.
Solution : g(x) = 1 — x and A(x) = | x| are continuous on R.
g(x) + h(x) = 1 — x +| x| is continuous.
S &x)=ho((g +h)x)) = h(g+ M) =|1—x+|x]|]| is continuous as A, g are continuous
on R.
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Example 22 : Prove cos(x?) is continuous on R.
Solution : f: R > R, f(x) = x3, g : R > R, g(x) = cosx are continuous.

s gof : R = R, (gof)(x) = g(f (x)) = g(x3) = cosx? is continuous.

Example 23 : f(x) = % xz L
k? x = %

Can you find £ so that f is continuous at x = % ?

, . . kcosx . ksina k
Solution : lim f(x) = lim ———=< = =k a=E — x
x—)%f() x>z 2(%—75) a—0 20 2 ( 2 )
T
/(3 =#
. . . _ T . _ 14
Since f is continuous at x = > lim f(x)_f(z)
x—)%
.k
S5 K2
. =1
S k= 5 or 0

[Note : For k=0, f(x) = 0 for all x € R.]

sinx

Example 24 : f(x) = x#0

k x=0
Can you find £ so that f is continuous at x = 0 ?

Solution :  lim f(x) = lim S{;‘r = lim SiX _ 4
x— 0+ x— 0+ x>0+ X

. _ i Sinx . sinx _
iy s = i =t s -

. lim f(x) does not exist.
x—0

.« f cannot be continuous for x = 0, for any value of £ € R.

Example 25 : f(x) = si;z# x#0
k2 x=0

Find £, if f is continuous for x = 0.

Solution : lim f(x) = lim sindx
x—0

x—>0 9x

lim Sin4x 4

x>0 4x 9
= i

9
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o f(0) = &

2= % for f to be continuous at x = 0.

k= i% for f to be continuous at x = 0.

Exercise 5.1

1. Prove cot, cosec and sec are continuous on their domains.
2. Prove ceiling function f(x) = |_x-| is discontinuous for all n € Z.

Prove signum function is discontinuous at x = 0.
Discuss continunity of following functions : (4 to 12)

4. fx) = x+3 x22 5. f(x) = ( x? x20
3—x x<2 x x<0
6. f) = (2x+3 x<1 7. f@) = % x#0
5 x =1 2 x =
3x + 2 x> 1
8. f(x) = ’“x"" x#0 9. f(x = |2x—3 x<0
1 x=0 2 x =
3x — 2 x>0
. 2x+3
10. f(x) = s;’;x x#0 1. f® = | 3373 x>0
2 _ sin3x
3 x=0 ox x<0
3 =
> x=0
3 x% -1
12. f(x) = 21 x>0
sinx
Il x<0
—1 x=0
Determine k, if following functions are continuous at given values of x : (13 to 16)
_ tan kx
13. f(x) = X x#0
1 x=0 (at x = 0)
— sin5x
14. f(x) x x#0
1 x=0 (at x = 0)
(x+1)tan(x-1)
15- f(.x) = sin(xz—l) X ¢ ].
k x=1 (atx=1)
16. f(x) = | 2x* + k x<0
x2 — 2k x20 (at x = 0)

Find a and 5 if fis continuous :
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17. fx)= | 2x+ 3 I1<x<2

ax + b 2<x<3

3x +2 3<x<4 (atx=2 and x = 3)
18. Prove sin*x — cos’x is continuous on R.

19. Prove sin2x cos3x is continuous on R.
20. Prove sin|x| is continuous on R.
21. Prove | sinx| is continuous on R.

3x and sinx3

22. Prove sin are continuous on R.
23. Prove cosx" is continuous on R. (n € N)
24, Prove cos”x is continuous on R. (n € N)
25. f(x) = sinx — cosx x#*0
{ -1 x=0
Prove f is continuous at x = 0.
26. f(x) = | |sinx — cosx| x#0
{ -1 x=0
Is fis continuous at x = 0 ?

SinxX — cosx
27. f(x) = x—%

S
#*

N RN

k x =
If f is continuous at x = %, find k.

x —2n
x—2

80 x=2

28. f(x) = x # 2

If fis continuous at x = 2, find ».

5.4 Exponential and Logarithmic Functions

The function f(x) = x" is used in polynomial functions and rational functions.
Let £,(x) = x".

[ix) = x, fH(x) = x2, Hx) = x3,..... etc.

Let us draw the graphs.

For f5(x), x 1 P 3 4 5 -1 ) 3
S,(%) 1 z 9 16 25 1 4 9
For f3(x), x 1 ) 3 4 - 1 - 3
f3) 1 8 27 64 125 -1 =
CONTINUITY AND DIFFERENTIABILITY 153



As x increasees, f,(x) increases. For a fixed increment in x, where x > 1, the increment in f (x)
increases as n increases. For example if x increases from 2 to 3, f{,(2) = 210, S1i0B®) = 310,
o) = 220, £,,(3) = 320

Obviously 320 — 220 > 310 _ 310,

i

Figure 5.15
Now we consider ‘common exponential® function f(x) = 10*. This function increases faster

than any f(x). Let x = 102.
2
Now, flOO(x) = xlOO = (102)100 = 10200’ f(x) = 1010 = 10100

3
For x = 103’ floo(x) = %100 — 10300, f(x) = 1010" = 101000
4
For x = 104, floo(x) = (104)100 = 10400, fx) = 1010° = 1010000
Obviously, if x > 103, f(x) increases much faster than £, 5,(x).

le _ —_{1 X
=¥ y=(3)
y=5 »=(3)
1/ r= (3
©, 1)
<10 :5 [9) |5 1:0>X <10 (6] 5 1.0, X
e R 54
R Figure 5.16 a0
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Exponential Funetion : f(x) = @, a € R", x € R is called an exponential function.

(1) If a > 1, f(x) increases as x increases.
If a < 1, f(x) decreases as x increases.
(2) The graph of f(x) passes through (0, 1) for any a € R,
(3) If a # 1, the function is one-one and onto.
(4) Its range is R,
(5) If a becomes larger, the graph of f(x) leans towards Y-axis for a > 1.

(6) As x becomes megative and decreases, the graph of f(x) approaches X-axis but does

not intersect X-axis.

Laws of indices for real numbers :

1) o =a"*Y @) & =gy
a”
3) (@Y =a¥ (4) (aby =a*b* a, be Rt x, ye R

(This content is only for link to the discussion that follows and this is not from examination
view point).

The constant e : Limit of a sequence : Just like functions, some sequences also approach a ‘limit’

11 11
> 2’ 3""’ l(x)’ n

The sequence 1 .... has terms nearing 0.

We say lim L-yp
n—eo

We do not formally define limit of a sequence. We accept following results.

(@)) ]im-l-=0.(n€N)Wealsoassume 1im-1-=0(x€R)
n—)oon x—)oox

2 lm =0 lr| <1
n— oo

1

fr o = AT e 03
For example if » , we have the sequence, 2> 4 8 6 and ( 2) approaches 0 as n

1
I3
becomes larger and larger.

Consider the sequence

n
I gL LA ("jL
(1+n) 1 +(1)n . (2) n? tot \n n"

nn-1) nn—-Nn-2) + nn —1)...1

= b 21 n? 31n3 n'n"
—yg Y
R C N RS

1— %, 1— %, 1— % are all less than 1 and hence their products wherever occuring are less
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n
1 14 1 4 1 Sl
(1+n) <1+1+L+Ll+L 4 4+ L n>1

L @"-1<n))

141
®:1c Dbl &+ e

(Geometric Progression)

(1+2)" <1+2(1—(%)"J =3 —2(4)" <3 @
Obviously (1+%)" %D (= > 1) (i)

n
We assume sequence (1+%) has a limit called e and by (i) and (ii) above 2 < e < 3.
Thus e is a definite constant satisfying 2 < e < 3. It is called Napier's constant.

Approximatly e =2.71828183

n
lim (1+l) =e
n— oo Il
X 1
We can prove but we will not prove lim (1 +L) = e or replacing L by x, lim (1 +x)*=e
X— oo x 2 x>0

Logarithmic Function :

We know exponential function f : R — RY, f(x) = @ (@ € R* — {1}) is one-one

and onto.
Its inverse function g : Rt — R is called logarithmic function. So if y = f(x) = &*, then
x =g() = log,y
This function is denoted as g = log,
If y = o, then x = log,y
We know for inverse functions, f : A — B and g : B — A, (fog)() = y, y € B and
(go)iix) =x, x € A
Now f(g0)) = ¥
S(og,y) =y
alogay = y
or in other words, @'°8a* = x for x € R"
If a = 10, we get what is called common logarithm. i.e. log,ox
Thus, £ : R — R¥, f(x) = 10" has inverse log : Rt - R, gx) = logox

If a = ¢, we get natural logarithm and it is denoted by In_x. But unless otherwise stated,
we will write Inx as log x or simply logx.
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(1) log has domain R' and range R. Hence, logarithm of only positive number can be
obtained and log x is a real number if x € RT .

(2) @®=1. Hence log,1 =0
Hence log,1 = 0, log;,1 = 0
3) a

a. Hence log,a = 1
loge = 1, log,,10 = 1

e%%e* = x as gl%%e* = x for @ € RT — {1}

Y
1\

Figure 5.18
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We can see that graphs of f(x) = logx and f(x) = &* are mirror images of each other in the
line y = x.
(1) (1, 0) is on the graph of log function.

(2) For a > 1, it is increasing.

For 0 < a < 1, it is decreasing.

Figure 5.19

Some rules for logarithm :

(1) loggmn = log,m + log,n (m, n € RY, a € Rt — {1})
Let log,m = x, log,n =y

S o m=d,n=d

o=@ ="V

s logmn=x+y=logm+ logn

) 1og,% = loggm — log,n (m, n € RY,a € R" — {1}
Proof is similar as in (1)

(3) logx" = mlogx xeR,neZaec R -1}
Let log,x =y

Soox=a

s XN = (@) = aY

s logx” = ny

<. logx" = nlogx
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iogcb
log.a

(4) Change of Basis Rule : logb = ®eRYaqceRt- )

Let log b = x, log.a =y

b=d,a=0
b = (cy)x =
log,b = xy = log,b X log.a
logcb 5
log b = Tog,a (since a # 1, loga # 0)
Also lim lECH®) lim Llog(l + x)
x>0 & x50 *
1
= lim log (1 +x)*
x—0
L
= log ( lim (1 +x)* ) (log is continuous)
x—0
= log,e
=1
log 1+ x) I
’ x—=0 x

5.5 Differentiation

We have learnt the concept of differentiation last year. Let us remember.

If f: (a, ) = R is a function and if ¢ € (a, b) and & is so small that ¢ + & € (a, b),

fle+h—f
h

or [-g; f(x)]x= c or (%]x

f is differentiable at x=c.

then hH—TO , if it exists, is called the derivative of f at ¢ and is denoted by f'(c)

Il

¢ Where y = f(x). If the derivative of f exists at x = ¢, we say

is also denoted by y,.

B&

If £ is differentiable for all x in a set A, (A # )), we say f is differentiable in A.

im JC€+M=F© 4 fim LE+M=F© i

fis differentiable at ¢ € (a, ) means e 7 pm 7

and are equal.
Let f be defined on [a, b]. f is differentiable in [a, 5] means
(1) f is differentiable in (a, b)

im f{a+h)-f(a)

iy s h exists.

(2)

We call this limit right-hand derivative of f at x = @ and write f'(a1).

lim fe+h—fd

(3) s 8 7 exists,

We call this left-hand derivative of f at x = b and denote it by f'(b—).
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We also assume following working rules and standard forms.
If f and g are differentiable at x,

(1) f * g is differentiable at x and %(f(x) + g(x)) = ﬁ’; feo) + -j—xg(x)

(2) fx g is differentiable at x and L £ () g() = £(x) = 209 + g() L f(x)

d d
3) {;‘ is differentiable at x if g(x)# 0 and % {;g; = g(x)gf;?(;')f]ix)ag(n
@ Lxn = -1 neR, xeR
(5) ﬁ;siux = cosx x €R
(6) —ad;casx = —sinx x € R
) %tanx=sec’2x xeR-{@k-DE |k e z)
(8) -f;secx=seax tanx xeR-{@k-1DE |k ez}
©) :id;com = —cosecx x€R— {kn |k € Z)
(10) —-%cosecx = —cosecx colx x € R— {kn | k € Z}

Now we prove a theorem.

Theorem 5.2 : If f is differentiable at x = ¢, it is continuous at x = c. ¢ € (a, b)
Proof : Let f be differentiable at x = c.

lim L@ - f©

ro>e  x—c exists.

Now f(x) — f(c) = [f"‘+f‘c’j (x— ) for x # c.

- — ) . _
T () — f(ep - Jim FOZLE lim =0

lim Jf@®-f©

(because f is differentiable, ', “————— exists)
=f(©) -0 = 0
xliglcf (x) = xlii)nc(f x) —f(@© + f()
= lm (@) — /@) + Jm f() (both the limits exist)
=0+7(

=f()
f is continuous at x = c.

But a continuous function may not be differentiable.
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Consider f(x) = | x|

im |x|]= lim x=0, lim |x|= lm (—x)=0,f(0)=]0]=0
x— 0+ x— 0+ x— 0 x— 0

.. fis continuous at x = 0.

lim f®-fO Ix1

— 1 X _
x— 0+ x=0 _xll)m0+ x _x]i)n})+x :
lim f(x_)—f(0)= lim X! — lim =% =
x—0- Xx—0 x=>0- X x—>0- X
. (x)—f(@
. lim fo-fO does not exist.

x—0 x—=0
s f(x) =]|x]| is continuous at x = 0 but not differentiable at x = 0.
Can we explain the situation ? Y
We had seen that f'(c) is the slope of tangent
toy = f(x) at x = c.
See that the graph of f(x) = | x| consists of two
rays meeting at (0, 0) and does not have a tangent at é
(0, 0). It has a ‘corner’.

When can a function fail to have a derivative ?

42
(1) It is discontinuous at that point. (Fig. 5.21) 13
(2) The tangent is vertical at x = ¢. (Fig. 5.22) &
(3) There is no tangent at x = c. (Fig. 5.23) Figure 5.20
Y Y Y
F, N
3"/'0
] /
1 -
i +—t—+—>X € >X <€ > X
-3 -2 .10 1 2 3 o -3
T-1
+ 2 -2
+-3 -3
v v
Figure 5.21 Figure 5.22 Figure 5.23

Exercise 5.2

1. Prove that f(x) =|x — 1|+ |x — 2| + |x — 3| is continuous on R but not differentiable at
x =1, 2 and 3 only.

2. Prove f(x) = xsin% x#0

0 x =0 is continuous but not differentiable at x = 0.
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3. For f(x) = {x2sin% x#0
0 x = 0. Prove f'(0) = 0. Deduce f is continuous at x = 0.
4. Find f'(x) for (1) f(x) = sin®x, (2) f(x) = tanx, (3) f(x) = x4, (4) f(x) = cos*x
#
5.6 Chain rule or Derivative of a Composite Function

We have seen how to find the derivative of sin®x or tan3x using product rule or the derivative of

sin2x or cos2x using formulae from trigonometry like sin2x = 2sinx cosx, cos2x = cos’x — sin’x
along with product rule.

But they were simple cases. Suppose we want to find the derivative of tan>(x2 — x + 1). It is not
SO easy.

Let us take an example.
Let f(x) = 2x + 1)*
16x* + 32x3 + 24x2 + 8x + 1
f'(x) = 64x3 + 96x% + 48x + 8
=8B8x3 +12x2+6x + 1)
=8(2x + 1)3
=2.42x + 1)3
Let g(f) = # and t = h(x) = 2x + 1. So, g(h(x)) = g2x + 1) = 2x + D* = f(x)
S (x) = gh(x))

Now g'(f) = 483 and % = H(x) =2

f1) =82x + 1) =42x+ 1)3-2

=482 = gL = 2() H(x)
So, L f(x) = 4 gh(x) = g()) H(x) = g(h(x)) H(x)

Here, we have expressed f(x) as a composite function of two functions g(f) = ¢* and
h(x) = 2x + 1 whose derivative can be found out in a very simple manner and f'(x) can be calculated
in a simple way.

Let us make it formal.

Chain rule : f: (&, 8) —> (¢, d) is differentiable at x and g : (¢, d) —> (e, J) is differentiable
at f(x) are two differentiable functions.

Now, (gof)(x) = g(f (x))
Then (gof)'(x) = g'(f (%) /')
In other words let h(x) = (gof)(x) = g(f (x)). Let f(x) = ¢
Then k'(x) = (gof)'x)= g'(f (x)) f'(x)
=20 f'Kx
4 =4 4 =
£ ®) = - g0) 5= (). where t = f(x)
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Thus, ﬁ;g{f x) = %?— % where u = g(f) and ¢ = f(x).

Hence 4% = dit 4L where 4 = g(r) and 1 = f(x) and u = g(f x))

Thus if u is a function of 7 and ¢ is a function of x. Then u is a composite function of x and

du _ du dt
dx drt dx

This rule is called chain rule.

Continuing or vl r e o i 1

Here u is a function of ¢, ¢ is a function of s, s is a function of v and v is a function of x.
Example 26 : Find f'(x) if f(x) = sin(tan x)
Solution : We have g(f) = sint and ¢ = h(x) = tanx
S (x) = (goh)x) = g(h(x)) = sin(tanx)
S'x) = gh(x)) H(Kx)
=g® Hx)
cost h'(x)

= cos(tanx) sec’x (t = tanx)
f'(x) = cos(tanx) sec*x
But we can make it simpler.

f(u) = sinu where u = tanx

f'x) = % % = cosu sec’x = cos(tanx) sec’x

Generally, we make calculations orally.
Go on differentiating functions selecting the outermost function first and then proceeding to
differentiate till we reach the variable and multiply all derivatives.

Let f(x) = sin(cos(2x + 3))

f'(x) = cos (cos(2x + 3)) (—sin(2x + 3)) . 2
Derivative of outer most (Proceed to (Derivative of last function
function at its variable. ‘inside’) 2x + 3)
= —2sin (2x + 3) cos(cos(2x + 3)) (rearrange)

Let f(x) = sin(tan (cos (x> — 3x + 51)))
f'(x) = cos(tan (cos (x2 — 3x + 51))) (sec? (cos (x* — 3x + 51))) (—sin (x2 — 3x + 51)) X

Stage 1 Stage 2 Stage 3

(2x —3)

Stage 4
= —(2x + 3) sin(x2 — 3x + 51) sec? (cos (x2 — 3x + 51)) cos(tan(cos(x> — 3x + 51)))
(rearranging)
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Example 27 : Find Zx_y’ if y = sin’x cos>x

dy d d

Solution : = = sin’x 2% cosx + cosox 4= sin’x
dx dx dx

3, 4 5 5¢ A (cinx)3
X (cosx)’ + cos’x e (sinx)

sin
= sin3x - 5cos*x (—sinx) + cos’x - 3sin®x cosx
= —S5sin*x - cos*x + 3sin’x cosx
[Note : In sin”x, sin"x = (sinx)"; power is ‘outermost’ function.]
Example 28 : Find <= sind(2 — x + 1)

on ¢ 4 Gind3(x2 — =4 [gin(x2 — 3
Solution : 2 Sin —x+1 ax [sin(x x + 1]

=3sin’ (x> —x + 1) cos(x2 —x+ 1) 2x — 1)
=3Q2x — 1) sin?(x? — x + 1) cos(x>2 — x + 1)

Example 29 : Find d

dx sinx>
1
solution : 4 [ 3 = L (simx3)?
Solution : e sinx3 = dx (sinx>)
1
= %(sinx-‘*")_2 “cosx3 - 3x2 (J_ is outermost function)
5 x? cosx®
T2 Jsinx?
, d g
(Note : Remember ax Jx = 2‘/;)
Example 30 : Find £ 43,
d d 32T _ d 3
i . L4 . = £ ] 4 = 4 (oin)?
Solution : x sindx ix [(sinx)>] dx (sinx)
L
= %sin 4x - cosx
3cosx

- A% sinx

| Exercise 5.3|

Find the derivative of the following functions defined on proper domains :
1. sinP(2x + 3) 2. tanx 3. sin’x cos’x
4. cos(sin(sec(2x + 3)) 5. sec(cot(x® — x + 2))

6. Differentiate the identity sin3x = 3sinx — 4sin3x. What do you observe ?
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7. Find % 2x + 3y (3x + 2)" 8. Find % (sin™x — cos™x)
9, Find 4 sin3x cos3x
dx

10. Find %sin3(4x — 1) cos3@2x + 3)

5.7 Derivative of Inverse Functions

We have studied inverse trigonometric functions in chapter 2. Now we would like to find their
derivatives.

Derivative of Inverse Function : Let f: (a, b)) — (c, d) be a one-one and onto function,
so that its inverse fumction exists. Its inverse

g : (¢, d —> (a, b) satisfies x = g() = f1(y) if y = f(%)

Y R G I dx
We assume f'(x) = == = 7y = & (dy # 0]
dy
dy _ 1. ' —d
L=a or f'®=75
dx & dyf »
We have some standard forms :
5 1
(1) - sin Ix = — |x] <1
Let y = sin Ix. y € (—%,%) So x = siny > # :!:%— as x # I1)
dx [ T T
dy = cosy = 1—sin2y (cosy >0 as y € (—-5,3-))
dy 1 _ 1
dx  dx 1-x?
Yy
%sin_lx = 1—1x2
d . |
2) —=—cos x = — x| <1
Let y = cos” x. y € (0, T). So x = cosy ( # 0, T as x = *1)
dx , .
dy = —siny = _Jl—coszy (siny > 0 as y € (0, m))

.
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€))

sin x + cos lx = %

255X + 1x COS X dx 2 0

— _ 1
%cos lx=—%sin 1x=—_m x| <1
i tan 'x ) x€E€ER

Let y =tan lx. y € (—%,%) So x = tany.

ax 2

dy = sec”y

dy _ _ 1 _ 1 __1

dx  sec’y 1+tan’y 1+ Xx?

d —1 1

=—tan 'x =

dx 1+ x2

d ~1 1

——cotf 'x = — xR
dx 1%

We can prove as in (3) or tan x + cof x = % will give the result.

d — e
=—5ec x = x| >1
dx 1% 2% =1 ]

Let y = sec x. y € (0, T©) — {%} So, x = secy. (Why y#0,y# T ?)
dx
dy = secy tany
yis
Now, secy =x, y € (0, T) — {7}
T T
There are two cases. y € (0,7) ory € (7,73).

W ye (0.3)

. x=wsecy >0, tany = Jx2 _1 as tany > 0

. % = secy tany =x‘,x2_1 = |x|Jx2—1. Since x > 0, so |x| = x
Loy 1

Cod xR -1

o) ye (£.7)

x =gsecy < 0. So |x|=—x
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tany = —J 2 _1, since tany < 0
@& _ 1 _ 1 - —
dx  seytany — _x x> 1 ixifx® -1
b1y
- = x such that |x| > 1
dx Ix1yx? -1 ||
P d ) S L
(6) Similarly we can prove, —— cosec 'x = — =
dx Ixlyx® -1

or since sec lx + cosec lx = %

d

a_ —1 + i —1
dx sec X dx cosec

- dn _
* dx 2 0

4 cosec” Ix = -4 sec” lx = —+
dx dx le‘/x -1

|[x] > 1

[x| > 1

We have introduced e in this chapter. 2 < e < 3, e is the base of natural logarithm.

We assume lim -1

=1
r—>0 h

We know lim 2°80*X _
x—>0 X

1

Let log,(1 + x) = h. Sox = " — 1.

. k
Using (i), hhglo s =1 (Asx — 0, h =log(l +x) —> 0)

lim €' -1 =
h—0 h

@

) -g;e"=e“

h
d x_ lim € ¢ _ lim fim [&=L|_ .1 =
x5 h oo € nool TR el=e

d x = ox

o E
®) L o* = o log.a
dx e
We know a = elo84
& = (elogea)x = g xlogea
a* = ¢'. Here t = x log,a
d d  dt

Bychainruleaa" =3¢ dx

=eé'. log,a
=a* log,a

d x=
dxa" a log,a

¥
dxkx k)
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Note : By using chain rule 5
It is like this e5"* = exp(sinx)

Lesinx — i

j eSinx = oSINX cogx.

Outermost function is exp. % (expx) = % & =e" =expx

(exponential (sirnx))

d

= i exp(sin x) = exp(sin x) asinx = eSinx cos x
4 tan2x — Ltan2x d_
75 ¢ e ; tan2x
= 2elan 2x goc2)x
d - n
(9) rlogx = o x € R
Let, y = logx
x=¢
dx
dy &
dy _ 1 _ 1 _1
dx dx e X
dy
a -1
dx °8F =
3
. d — 3x—x 15
Example 31 : Find Etan 1 ax2 x| < N
Solution : Let x = tanB, 6 € (—%,%)
< = —F<x<F+
1x1 <73 B
= tan(—%) < tan® < tan%
= —% <0< % (since O € (—%,%), tan is T)
_n r
= —5 < 30 < >
X=X . 3tan© — tan %0
Now, y = tan" 757 = tan 1-3tan 20
= tan~ ! (tan30)

T N
= 30 (3 € (-3.3)
= 3tan"Ix

-3

1+x

&l&
I
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T . d .. -1 2 L
Example 32 : Find 2z 5 Zx‘h_x , x| < A

Solution : Let O = sin~lx, —% <0< % So x = sin.

L L L
|x|<‘/§'=> 5<x<ﬁ

Now, sz‘n(—%) < sinB < sin%
<<% (sin is 1 in (-Z, Z))
o —B<20< Z
Sy =sim12x 1 42
= sin"1 (25in® cosB) (Jl—xz = Jl_sg,ﬂg = cosO as O € (—*g-'%*))
= sin~1 (sin20)
-2 (0 « (-35)
y = 2sin” lx
dy _ __2
ax Ji-x?

1
Example 33 : Find %sec_1 221> 0<x< ﬁ
Solution : Let 0 = cos™x. O € (0, 7). So x = cosO. (Why © #0or m ?)

1 1 1

o —t 1 1 _
Y T Sec " ox2 1 T Se€C " 500520 -1 ~ S€C T cos 20

y = sec ! (sec20)

Now, 0 < x < f = cos% < cos® < cosT

)
=LZ<0<Z (cos is ¥)
=L<20<m

sy = sec 1 (sec20) = 20 = 2cos™x (29 S (%’-?‘C) c [0, n] - {.‘fi‘.})
dy _ __ =2
dx 1- x?
Example 34 : Find 4 cos™ (46> — 30 for ) $ <x <1 (D 0<x<3

Solution : Let © = cos !x so that x = cos0, 0< O < T
y = cos 1 (4x3 — 3x) = cos™! (4cos30 — 3cos0)

y = cos ! (cos30)
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Q) % <x<1 = cos% < cosO < cos0

=>0<9<% (cos is V)
=0<30<T7
oy =cos ! (cos30) = 30 = 3cos Ix 36 € (0, n)
dy _ _3
dx 1- x2

i) 0<x< % = cos% < cosO < cos%
=>Z<0<Z (cos is ¥)
= n<30<3
=0<30-n<Z
y = cos! (cos30) = cos (—cos(t — 30))
=T — cos cos(Tt — 30))
=T — cos (cos(30 — T))

=7 — (30 — m) (G0 - m e (0.3) < [0, n))
=21 — 30
=27 — 3cos x

dy _3

ax Ji-x?

5.8 Derivative of an Implicit Function

Sometimes we encounter equations of type f(x, y) = 0 from which we may or may not get y as
a function of x. Functions of type y = sin’x are called explicit functions of x. But 3y — sin2x = 0

»~

gives y = %sian.

This is an example of y being an implicit function of x. f\

Consider the circle x2 + y? = 1.

It is not a graph of a function. But y = J1— 2 and k_/

v

y = —J1—x2 two implicit functions can be defined from the Figure 5.24

relation x2 + 32 — 1 = 0.

So we get two implicit functions. See that any vertical line meets the circle in two points but
meets the semicircles in each semiplane of X-axis in only one point. So, each semicircle is a graph
of an implicit function.

But some equations are not easy to solve.

dy

x3 + 33 = 3axy is such a relation. How to find - for such implicit functions y ? We use the chain

rule and differentiate the relation assuming that y is an implicit function of x.

d 4 _ 4.3
For example prRd 4x
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d .4 _ dy _ ,3dy
dx W= dy y4 =47 dx
So, when we differentiate a term involving variable y w.rt x, we follow usual rules of
differentiation and multiply the result by %

Let us solve some examples.
Example 35 : Fi L = si
ple 35 : Find p from x + y = sinxy

Solution : Differentiating the equation,

d ,d  _d

dx ky—amw
1+ o cos. ( ) (chain rule)
dx Xy = Xy
= cosxy (x %y +y-1) (product rule)
1+ z = X cOoSXy % + ycosxy

(1 — xcos xy) % = ycosxy — 1

dy _ ycosxy —1
dx  1- xcosxy

Example 36 : Find % for x3 + 3 = 3axy

Solution : 3x2 + 3y2% = 3a(x% +y-1)

— ax) —=— Do ay — x2
dx
dy _ ay—x’
dx  y*—ax

Example 37 : Find == dy

= from ax? + 2hxy + by? = 100

1 . Q d_y =
Solution : 2ax + 2h(x =+ y) + 2by =0

(e + by) L = ~(ax + hy)
dy _ ax+ hy
dx  \hx+by
Example 38 : Find Lol from sin’x + sin’y = 1.

dx
Do =0

Solution : 2sinx cosx + 2siny cosy —— T
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. ody —-sin 2x
*t dx  siny
or
sin?y = 1 — sin’x = cos’x
. siny = * cosx {(Two functions)

Note : If sin’x + sin’y = 2, then sin’x = sin’y = 1 as |sinx| < 1, |siny | < 1. No such

—sin 2x
dx  sin2y

function exists. If sin’x + sinzy = 3, then can we write ?

No. sin?x + sin?y < 2. No implict function exists if sin’x + sin’y = 3. We assume existence

of implict function and differentiate. But an implict function may not exist.

Exercise 5.4

Find 2. : (1 0 10)

dx
1. x2+3y2=1 2. x + sinx = siny Josinx+y)=x—y
2 2
4. 22+ 3xy+32 =1 5. sinx + siny = tanxy G'xT_yT=1
2
7. 32 =10x s.f—;+;_5=1 9. x2+32 —4x — 6y — 25 =0

10. sinx = siny

Find the derivative : (11 to 16)

2x
11. y =sin"! Bx — 4x3), 0<x<% 12. y = tan™! 2> x#*1
_ll—x2 g —2x
13. y = cos T 22 4. y=sin" [ 2
_ _13x_—x3 L g 5 1
15. y = tan =32 > |x|>J§ 16. y = sin” " 2x1 - x*, ‘E<x<1

5.9 Parametric Differentiation
Sometimes x and y are given as functions of another variable, say ¢, called a parameter.
Let x =f() y = g®
Assuming that we can obtain # = f “1(x) and substituting in y = g(¢), we get y = g(f "1(x)).
So, y is a function of x.

But this type of solving and differentiating would be cumbersome. We have the following rule :
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Example 40 : If x

Example 41 : If x

e ¢ dx _
Solution : dt 2at
@
dy dr
=2 - =
d

= af?, y = 2at, find dy
dy = 2a

> dt

dy
& g'W :
%z & = o) where f'(f) # 0
dt
Example 39 : If x = acos0, y = bsin®, find %
Solution : % = —asin0, % = bcosO
= bcos ©
dy _ _d6  _ Dbcos©  _p
dy bcos® i _ bx
dx asin® g % T Ta?y
x? ¥
or directly poi e cos?0 + s5in?0 =1
2x 2y d
T E O
& _ _bx
dx a’y

E.

—2a _ 1

2at ~ t t#0)

= asin®0, y = bcos30, find Q
dx

T8 3bcos?0 (—sin0)

= =b .00
a

Solution : % = 3asin’0 cosO d_y
dy _ —3bcos*0sin®
dx  3asin?0cos
cos *0
co’® = “in 70 e

1
=% S6 co® = (ﬂja

= cos20 + sin?0 =1

“

Rule for differentiation of parametric functions :
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|Exercise 5.5 |
ind . : dx oy dx
Find 5= (wherever p is defined as a function of x and ar °F 4o # 0)
1. x = asecO, y = btan® 0 € R— [{k-DE |ke z} U {kn | k€ Z}]

2. x=cosO — cos20 y = sin® — sin20 O R—{krn | k€ Z}, cosO # %

3. x=a(® — sin0), y = a(l — cos0)

4. x = a(cost + log tan%), y = asint
5. x = a(cos® + Osin0), y = a(sin® — Bcos0O)
6. x= t% y=bt
. — —y
7 Ifx=‘/asm1t, y="aws1t,prove%=7 1] <1

*

5.10 Logarithmic Differentiation
Sometimes we have to differentiate a product of several functions or a complicated product or
[f ()18® form.

In such a case, it is customary to find L) by taking logarithms.

dx
e dy o [ex+3)(Bx—4)
Example 42 : Find s if y = 4x+9)(x—98

Solution : logy = % [log (2x + 3) + log Bx — 4) — log (4x + 9) — log (x — 8)]

1dy 12, 3 __4__ _1

Y dx 2 [2x+3 3x-4  4x+9 x—8]
dy _y 2 _,_3 __4 __ _1

ax 2 [2x+3 3x-4  4x+9 x—S]

Example 43 : Find % if y = xSinx

Solution : logy = sinx log x

< =
&&

= sinx-% + cosx log x

&&

= [si;zx + cosx log x] y
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Example44:1fxy+y"+a"+x“=l,ﬁnd%.

Solution : Let u = ¥, v=y", w=ad" + x%
Now, logu =y log x

ldu _ Y &
u dx x+10gxdx
du _ (Y a
dx (x +l°gxdx)xy
Now, v = y*
. logv=xlogy
1dv _xdy
v dx J’dx+10gy
dv

X dy
dx (yE+logy)y"
Now, u +v+w=1

du , dv  dw _
dx+dx+dx 0

(%+logx%)xy+(%%+logy)y"+a"logea+axa‘l=0

(x)’ logx+%y")%=—(xyx'y +y"logy+a"loga+ax"‘1)

dy —x¥ '+ y*logy+aFloga+ax®!)

dx xy* 1+ xY log x

Example 45 : Find Zx_y if y = (sinx)* + sinx*

Solution : Let u = (sinx)¥ = ¢ logsinx

. I . ;
(since a = e %%, sinx = elo8 sinxy

du = log sinx d ;
dx e* Ix (x log sinx)

* log sinx (1 - log sinx + x;z;x)

(sinx)* (log sinx + xcot x)

d - d
Ix sinx* cosx* dxx"

cosx® 4L ox log x
dx
= - l l
cosx* - &* °gx(x T logx)
= x* cosx* (1 + log x)

— = (sinx)* (log sinx + xcot x) + x* cosx* (1 + log x)

&&

(Note : a = el°24 helps to avoid taking logarithms.)
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Exercise 5.6

Find 2 :
x i
1% y=(x+%) + (x+i)x 2. y = cosx* + sinx*
3 Cx+1)3 (4x +3)° cosx

3. y= Tx—1)0 4. y = (log x)
5. y=@x+12x+23x+3)* 6. y=(log x)* + logx*

, (x+$)
7. y=xS"X% 4+ (sinx)y 8. y=x x

cosx i

9. y=(sinxy + (%) 10. y = 357 + 4coosx
11. y*=x» 12. xy = &7
13. ¥y*=1 14. y = (1 + x)(1 + x3)(1 + xH(1 + x8)

15. If y = (x* — 2x + 3)(x? — 3x + 15), find %

by (1) Product rule
(2) Multiply and using rule for polynomials.
(3) Logarithmic differentiation

and compare.

5.11 Second Order Derivative

If f is a differentiable function of x on (4, ) and if /'(x) is also a differentiable function
2

of x on (a, b), its derivative is called second derivative of f and is denoted by f'"(x) or -z—x%’-
or y, where y = f(x).

2
Thus f"(x) = % f'(x) or ZX—Z, or y,. Here y, denotes f'(x) or Zx_y

We can use chain rule as follows :
d _d ,dy _, dy _
V= dyyZE—2yE—2yy1
d _d d . _ ay _
ax = dy, 2% L= El = 2y,
Remember-d- 2 =g v =2
2=V = 2y g5 ¥ = s

d?y

de

Example 46 : If y = acosx + bsinx, prove +y=0

Solution : y = acosx + bsinx
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¥y = —asinx + bcosx

yy = —acosx — bsinx = —y
d%y

ez =0

Example 47 : y = ae* + be’*, prove Y, — 9%, +20y=0
Solution : y = ae®™ + be>*
b2 4ae®* + 5be>*
Yy = 16ae* + 25be>*
¥, — 9y, + 20y = (16ae® + 25be>*) — 9(4ae®* + 5be’*) + 20(ae®* + be*)
= (16 — 36 + 20) ae™ + (25 — 45 + 20) be* = 0

y2—9y1 + 20y =0
d*y
Example 48 : y = x* + sin3x. Find R

Solution : y = x* + sinx

dy _ . 3 )

7 4x° + 3sin“x cosx

Y _ 122 + 6si Zx + 3sin? '
= = + 6sinx cos“x + 3sin“x (—sinx)

12x2 + 6sinx cos’*x — 3sindx

d’y
de

Solution : y = log (logx)

Example 49 : Find for y = log (log x).

d =L Lil__1
ax log (log x) = logx x xlogx

(xlogx)O—l-(llogx+x-%)

d>
12 log (log x) o Tog 12

—(1+ log x)
(x log x)2

Example 50 : If y = acos (log x) + bsin (log x), prove that x2y2 +xy +y=0.
Solution : y = acos (log x) + bsin (log x)

__ —asin (logx) " bcos (log x)

1 x x

xy, = —asin (log x) + bcos (log x)

—acos (log x) _ bsin (logx)
X x

L =
dx(xyl)

x(xy, + 1-y,) = —acos (log x) — bsin (log x) = —y
x2y2 +xy,+y=20
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Example 51 : If y = cos lx, prove (1 — x2)y2 —xy; = 0.

1

Solution : y = cos™ 'x

a—-x2y?2=1

La-2p2=0

a- x2)2y1J’2 + (—2xy12) =0

A —=x2y, —xp; =0 o, = 0)

Example 52 : If y = tan” lx, prove (1 + x?)y, + 2xy, = 0.
1

Solution : y = fan 'x
_ 1
6 BRI
(1 +x2)y1 =1

A+ x2y, +2xy, =0
Example 53 : If y = aeP* + be?*, prove that y, — (p + q)y; + pgy = 0.
Solution : y; = apeP* + bge?*
Yy = ap?eP* + bge?*
apeP* + bge?™ — y, = 0 @
ap?eP* + bg*e?* — y, = 0 (ii)
Solving (i) and (ii) for e#* and e9*,

_ —bgy, +bq *» __—apy, +ap*y,
e = 2 2 P = —— oy
abpq * —abp~q rq (4 - p)
x — Y2t ah x — Y2t PN
= p-p e bg(g—p)

Substituting in y = geP* + be?*

_ (—)’2 +qy1J _ (—yz+pylj
Y=\rl@-pm q(q-p)
palg — py = —qv, + ¢*»; + py, — P*;
=@ — 9y, — ©* —
Vv~ @+ gy +pgy=0

5.12 Mean Value Theorems

There are some important theorems in differential calculus called mean value theorems.

Rolle's Theorem : If f is continuous in [g, b] and differentiable in (a, b) and if f(a) = f(b),
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then there exists some ¢ € (a, ) for which f'(c) = 0

>
>

Geometrical Interpretation : If the graph of

y = f(x) is continuous in [a, #] and if it has a non-vertical
tangent at all points (x, f(x)) where x € (a, b) and if f

(a) = f(b), there is some ¢ € (a, b) such that tangent at o

(¢, f(c)) to thecurve y = f(x) is horizontal or we can say

it is X-axis or parallel to X-axis.

Mean-value Theorem (Lagrange) : If f is v
continuous in [a, 5] and differentiable in (a, b), then Figure 5.25

(b — f(a)
T = FBY _ pocey ot saniv & & (o B Y aws@

Geometric Interpretation : If the graph of y = f(x) B, /()
Cle /@)

is continuous in [aq, b] and if y = f(x) has a non-vertical

tangent at all points, (x, f(x)) where x € (a, b), then

A
v
b

dc € (a, b) such that tangent at (c, £(c)) is parallel to the
secant line joining A(a, f(a)) and B(b, f(b)).

_ b) —
We know slope ofA(;_)B = i;_ii = f(;—z(a)

Slope of tangent at (c, f(c)) = f'(c). Figure 5.26

Hence the result.
Example 54 : Verify Rolle's theorem for f(x) = x2 — 4x + 3 in [1, 3].
Solution : fis continuous in [1, 3] and differentiable in (1, 3) as it is a polynomial in x.
fH=0,f3)=9—-12+3=0
dc € (1, 3) such that f'(c) = 0
Now, fl(c)=2c —4=0=c=2and 2 € (1, 3)
c=2,ce (1, 3)
Example 55 : Verify Rolle's theorem for f(x) = x> — 6x2 + 11x — 6 in [1, 3].
Solution : fis continuous in [1, 3] and differentiable in (1, 3) and £ (1) = 0 = £(3)

f'(x):3x2—12x+11=0=>x:@
x=2% 77 € (13

The are two value of ¢ namely ¢ =2 & ﬁ c € (1, 3)

Example 56 : Verify Rolle's theorem for f(x) = sinx in [0, TC].
Solution : sine is continuous in [0, Tt] and differentiable in (0, 7t) and sin 0 = sinTT = 0

X)) =cosx =0 = x = % in [0, TT].

c= % and %e (0, ) (c € (0, m))

CONTINUITY AND DIFFERENTIABILITY 179



Example 57 : Apply the mean value theorem to f(x) = cosx over [0, Tt].

Solution : cos is continuous in [0, 7T] and differentiable in (0, TC)

a=0,b=T
f) - fa . COS T« — cos 0 ]
LOS@D _ riey gives, o = —sinc
e

- = —sinc

.2 2
sznc—n.Als00< p < 1.

Since d ¢, 0 < ¢ < T such that sinc = %

[In fact, there will be two value of ¢ in each of (0,%) and (%,717) such that sinc = %

.12 . . 14
If we take ¢ = sin IE’ we will get only one value of ¢ in (0,7).]

Example 58 : Apply the mean value theorem to f(x) = ¢* in [0, 1].
Soloution : f(x) = €* is continuous in [0, 1] and differentiable in (0, 1). a =0, b = 1.

fO-f@ . . . e-1
=g =S gives, 75 = ¢°

e=e—1
c=log, (e —1)
Now, 2 < e <3
I<e—1<2
0<log(e—1)<log,2<log,e=1 (e > 2)
c€ (0, 1)and c =log ,(e — 1)
Example 59 : Apply the mean-value theorem to f(x) = log x in [1, e].

Solution : log function is continuous in [1, €] and differentiable in (1, e).
- - (x) = L
a=1b=efix)=-

loge —logl |
e-1

%=e_1 (log 1 =0, log ,e = 1)
c=e—1
Also 1 <e—1<e as e>2
c=e—1 c €, e)
Example 60 : Can you apply the mean-value theorem and Rolle's theorem to f(x) = [x] in [2, 2].

Solution : fis discontinuous at —1, 0, 1 and 2 (why not at —2 ?)
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£ is not differentiable at —1, 0, 1 in (-2, 2). Y
M
f=(-=2 -—2<x<-I 3l
1 —-1<x<0 5
1- _0
¢ 0 0<x<1 X
3 -2 -10 1 2 3
1 1<x<?2 -1
\ 2 x=2 p— 2
-3
But f'(x) = 0, x € (=2, —=1) U (=1, 0) U (0, 1) U (1, 2)
Figure 5.27

(Constant function)

Conditions of Rolle's theorem are sufficient but not necessary.

2)— f(-2 — (=
Also LE=LE2 = 22D 2 1) for any ¢ in (-2, 2).

(Infact either f'(c) does not exist or f'(c) = 0 for ¢ € (-2, 2).)

In any interval [a, 4] not containing an integer, f is a constant function and Rolle's theorem and

mean-value theorem can be verified but not otherwise.)

Exercise 5.7

Verify Rolle's theorem : (1 to 8)

1. f@) =x(x — 3)? x € [0, 3]

2. f(x)=x3—6x2+11x—6 x € [1, 3]

3. f(x) = \/9__,62 x € [-3, 3]

4. f(x) = log (;‘(zat“,f)j x€[abl O0<a<b
5. f(x) = sinx + cosx — 1 x e [0, Z]

6. f(x) = & (sinx — cosx) xe [E, 3L

7. f(x) = ot x€ [0, ), a>0

8. f(x) = e*cosx x € [_% %]

Verify Mean Value Theorem : (9-10)
9. f(x)=x— 2sinx, x € [T, ]

10. f(x) = logx, x € [1, 2]
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11.

12.

13.

14.

Prove xy < log

" % < % 0 <y < x using Mean Value theorem and taking f(x) = logx.

Apply Mean Value theorem and find ¢ :
() f@=x++ xe[l3]
(2) fx)=tarlx x € [0, 1]

tanb — tana

Prove sec2a < ~b—a < sec?b 0<a<b<%

Find a point on the graph of y = (x — 4)? where tangent is parallel to the line joining A(4, 0),
B(, 1).

Miscellaneous Example :

Example 61 : Find % log; (log,x).

logx

Solution : y = log, (%) = log,(log x) — log,(log 7)

dy _d d -
I — dx log; (log x). ( P log,; (log7) = 0)
d log (logx)

E log7

1
Tog7 % log (log x)

111 _ 1
log7 logx x = Xlogxlog7

Example 62 : Find % tan~ 1 (%j T <x<2N

4 . -1 Sinx
Solution : y = tan (1+cosx)

2sinx % cos 5
tan”! | ———
2cos 2%

= tan! (tan%) 3—;— <X <5

o X R X _
Now,2<2<1l2=> 2<2 n<o0

Now, y = tan™! (tan(%))= tan™! (tan(%—ﬂ:)) = % -7

P _1
dx 2
_, 1-9*
Example 63 : If f(x) = cos™! ST find f'(x), x € R

Solution : Let ¢t = 3%
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S f@

1- 12

|
= COoS
1+ 12

Let © = tan™ 1, —% <0< % So t = tan®

3* >

o.Sot=tane>o.So,0<e<§

s 0<20<

sS. cos

S cos

=7 . (1—tan2e
= COoSs T 20

1

N—

1+ 12 1+ tan’0

= cos™! (cos20)

=20

= 2tan 1t
1-9* _
1o 2tan~13%

X

S f(@) = cos! 1r9% = 2tan~13%

2-3%log, 3 2-3%log,3

1) = -

Example 64 :

Solution :

dy
ds

dy

I'I dx

d?y

dxz

Example 65 :

Solution :

1+ (3%)? 1+ 3%%

d?y

dx*’

If x = a (cost + tsint), y = a(sint — tcost), find

% = a(—sint + tcost + sint) = at cost
= a(cost — cost + tsinf) = at sint
= lant
_d (ﬂj
dx \ dx
= % (tant)

- d dt
= (tant) x

seczt
= a4
dt
2 3
_ sec’t  sec’t
atcost at

Ify = eaSi"_lx, |x| <1 prove that (1 — x2)y, — xy, — a%y

dy _  _ asin'x —a@__ _ _ D
E_yl_easmx 2_ =

0 <20 < m

(Taking ¢ = 3%
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(1 - 2y =
a- x2)2y1Y2 + (—2x)y12 = ‘12230’1 “dd;yz = 2y '5}’)’12 = 2y,y, etc.)
(A=, —xyy —a’y =0 1 # 0)

Example 66 : Does there exists a function continuous everywhere but not differentiable at exactly

n real numbers ?
Solution : Let f(x) =|x— 1|+ |x—=2|+ |x—3|+..+ |x —n|

| x| is continuous on R. So |x — 1|, |x — 2|,..., |x — n| all are continuous on R,

because composite function of continuous functions is continuous.
So, f(x) is continuous on R, because it is a sum of continuous functions.
|x—1]|, |x — 2|,..., | x — n| are differentiable except at x = 1, x = 2,...,, x =n respectively.
|x =21, |x — 3|,..., | x — n| are differentiable at x = 1.
S gx)=|x—2|+|x—3|+.. + |x — n| is differentiable at x = 1.
If fx)=|x—1|+|x—2]|+... + |x — n| is differentiable at x = 1, then
f(x) — g(x) = |x — 1] is differentiable at x = 1.
But |x — 1| is not differentiable at x = 1.
f@)=|x—1|+|x—2]| +.. + | x — n]| is not differentiable at x = 1.
Similarly |x — 1|+ |x — 2| +... + | x — n| is not differentiable at x = 2, 3,..., n.
.. fis continuous on R but not differentiable at x = 1, 2, 3,..., n.

;2
Example 67 : siny = xsin(a + y). Prove dy _ sin*a+y

dx sina
Solution : cosij—y = sin(a + y) + xcos(a + y) %

[cosy — xcos(a + y] Zx_y sin(a + y)

dy sin(@a+y)
** dx  cosy—xcos(a+y)

sin@a+y)
siny
sin(a + y)

cosy— cos(a+y)

B sinY(@a+y)
~ sin(a+y) cosy—cos(a+ y) siny
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_ sin*a+y)
sina

(sin(a + y) cosy — cos(a + y) siny = sin(a + y — y) = sina)

or
siny
X = ooy
sin(a+y)
dx sin(a + y) cosy— sinycos(a +y) sina
dy = si? (a+ y) = sir’ (a+y)
dy _ sin 2a+y)
dx sina
» 3
1 2
Example 68 : If (x — a)2 + (y — b)2 = r2, prove that %

Solution : 2(x —a) + 2(y — b)y; = 0

X—-a
Y177 y"b
__ O-b-1-x-ay
Y2 T (y - b
(x-a)x-a
_ y-b+—7=
(y-b)?
 x-a+-b)’
- (y-b)*
_ r2
(y-by*
) 3
(x-a) |2
3 1+
a+y>2 | [ (y-b)?
ot 2 B -r2
y-by
3
_|x—a* + ¢y —b*12
= —
= —:—2 = |r| is a constant.
3
1+ y%)2
( Y2

a curve having ‘uniform’ radius of curvature at every point.)

is a constant.

is called the radius of curvature of curve y = f(x) at any point (x, f(x)). Circle is
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Example 69 : Find % (log x)'°8* wherever defined.
Solution : y = (log x)'°8*
.. logy=logx (log (log x))

. o lady _ 1 log x
S Y4 T X log (log x) + ogx X
_ log(log x) +1
x
1+ 1 log x
. % =( og;og )j (log x)&*

Example 70 : Find [% sec‘lx]x — _, by definition. (First principle)

lim sec\x — sec™\(-2)
x— -2 x—(-2)

Solution : [%sec‘lx]

t—(—sec™! 2)

t = sec“lx)

t_)zT'n; sect +2
oy (-3
',E,sznW
_ L =
S Searva
-2

3

¢ — 2 2sect (cost — cos 27")

27
! 3

27 2
12 e PP e &
2sect | —28in > sin >

(t—ZT”)/z

27 f+28

3 —2sect - sin > 3

sin

248
1
243

N U [ S— S
Verify : — = sec™'x Y il Y 7 e

186 MATHEMATICS 12



“

11.

13.

15.

17.

19.

21.

23.

| Exercise 5 |

Find points of discomtinuity, if any, for following functions (1 to 4)

o xB-27 | sinx-1
J&x) =) == x#3 2. f® =)= x#1
x=3 2 x=1
25 _ ot
fx) { x+1 x # —1 4. f(x) = P x #2
=-1 e? x=2
Find &, if following functions are continuous at given value of x : (5 to 8)
fx) = x# 3 6. fx) =1\ kx2 x<1
x=3 atx=3 ¥+ 1 x21, atx=1
fx)=(2x+3 x<2 8. f(x) = cosx 0<x<%
- - - =X =X
x=2 atx=2 K — 4 x== atx =3
3x+ 1 x> 2 sinx — 1 x>%
Find a and b, if following functions are continuous (9 to 10) :
f&x) = asinx + b OSxS% 10. f(x) = ax + b 0<x<1
cosx %<x$7t 2x + 3 1€x<2
tanx + b Tl',<x<3Tn x+a x22
Fmd for following functions y where ever defined :
=1 2 41 12. y = cor 1 725 +1
y=log -+ 1) .y=cof ' T2 x# &
y = sin (log (cosx)) 14. x‘h_yz +yJ1—x2 =a, |x|<1,|y|<1
y = (sinx)sn* 16. y = (sinx — cosx)sinx — cosx
x x+<+
_ 1 _ =3
y—x"+(x+x) 18. y=x
y = cos(x*) + (tanx)* 20. y =sin Ix+ sin_l‘h_x2 , | x] <1
y=tan x + cof Ix x € R 22. x = (cost)! y=(sint)) 0<t< %
L ax = = 2 l 7 = Q
Prove 4z ¢cos (bx + ¢) = re*cos (bx + ¢ + ) where r Ja +b*, cosOL = sinQL ;

2
and % e®cos (bx + ¢) = r? e®cos (bx + ¢ + 20)
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24.

25.

26.

27.
28.

29.

30.

31.

32.

33.

34.

35.

36.

37,
38.

39.

40.

41.

42.

43.

44,

2
Find 2= i 1¥* %=1 e R _ (0}

dx X
. d ,/1+x Jl—
Find atan J1+x+J1 oy x| <1
. d —1 1+ sinx n
Find 25 fan 1= sinx 0<x<7

If y = (cos %)%, prove (1 — x?)y, — xy; = 2
If y = sinpt, x = sint prove (1 — x2)y2 —xy + Py=0

Ify= e”"“”_]", prove (1 + x2)y2 +@x —m)y, =0
1

1 1
If2x=ym +y ™ (x = 1), prove (x2 — Dy, +xy, = 2

msy

If y = (x + x2 —1)" prove (x> — L)y, + xp; = m%y

logx

_ ox— dy _ __°8%
If xV=¢e* "7, provea— (logx + 1)

If y = e sinbx, prove y, — 2ay; + @+ by=0

/2_2
dy _ Na -b" o<x<

B — 2 _ 2 ay _
If (@ — bcosy)(a + bcosx) = a* — b*, prove dx  a+bcosx’

If y = (tan"x)2, prove (1 + x2)2yz + 2x(1 + x2)yl =2

X
If y = xlog 4 px> pProve x3y2 = (xy; — )

If x = asint — bcost, y = acost + bsint, find y,.

If y = sin(sinx), prove y, + tanx-y, + ycos®x = 0

Ify= —1 3+5cosx d_y= 4
Yy = €oS " 5 3cosx » PIOVE dx 5+3cosx-

Find the derivative of zan™1 wrt sin”! 2xJ1-x2). 0<x< %

1-x?

1-x2 . _2x
1 wrt. sin”! 2
1+x> Wt 1+x%

Find the derivative of cos™

P -1 ] .
Find [ dx(cosec X) i by defination.

Find — [ m"'c"s ﬁ]

. i _1—4L
Find x tan”" 1 o152 > x>0

188
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45. Find < ran™!

. d
46. Find == tan~
dx J1+x

47. Find % tan 1(secx —

x| <1

—Jl x>

tanx).

48. Select a proper option (a), (b), (c) or (d) from given options and write in the box given

on the right so that the statement becomes correct :

M) [Lsecx], - 5= .

@ Tz (b) ~5— © o5
) % = e (x> 0)

@ *! (b) © 0
@) %(sm x + cosIx)= . (x| < 1)

@20 (b) 12 2 © [ . )
@) % A= (@a>0)

@@ a?(1 + loga)  (b) 0 ©)
(5) % e = .

(a) &> (b) 5¢5* (c) 5x e*— 1
(6)%10g|x|= ...... . (x # 0)

@ T ®) 4 (c) does not exist
(7 % Sindx = ... .

(a) 3sin’x (b) 3cos’x (c) 3sin’x cosx
8) % tan"x = ... .

(a) ntan” ~ x (b) ntan” = lx sec?x (¢) n sec?x

Section A (1 mark)

@ o5

() x¥*(1 + logx)

(d) does not exist

(d) does not exist

@ o

@) ¢

(d) —3cos?x sinx

(d) ntan” —

ly sec? — 1

-

X
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) Iffx)=(ax+ b 1<x<5 1]
Ix—5 55x<10
bx + 3a x 210

is continuous, (a, b) = ......

(@) 5, 10) (b) 5, 5) (©) (10, 5) (d) (0, 0)
(IMIf f(x) = x72—a x<a 1
0 x=a
a— X x>a then...
a
(@ lm f@x)=a (b) lim f(x) = —a
x—a+t+ xr—a
(c) f is continuous at x = a (d) f is differentiable at x = a
(DI f&x) = ( x x€ (0, 1) JE
1 x21
(a) f is continuous at x = 1 only (b) f is discontinuous at x = 1 only
(c) f is continuous on R* (d) f is not defined for x = 1
d 1 _
(12)5 loglxl T eeeees . D
@ Tx7 ® Tomar © - @
lx1 (log x)2 X(loglx |)2
(13)If y = asinx + bcosx, y* + (y))? = ... . (@ + b2 £ 0) 1]
(a) acosx — bsinx (b) (asinx — bcosx)? (c) a*> + b? o
(14)% 2 + sin2x)? = .. | ]
(a) 3(x2 + sin?x) (b) 3(x2 + sin®x)> (2x + sin2x)
(c) 2x + 2sinx cosx @ao
(15)% Joste = o 0<X< T ]
xsinx + cosx XCOSX xcosx + sinx 1
@ xsinx b) 2v/xsinx © 2 xsinx @ 2V xsinx
Section B (2 marks)
; 1 1-x
(l6)%tanll+x= ...... ) ]
1 1 1+x 2
@ =742 ®) 172 ©) =% (YR
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—1 —_—1 1 1
@ 1+ cos %x (b) 1+ cos *x © 3 @ =3
y-x
(18) If x = efan' "2 | then % = e : -
(a) 2x (tan (logx) + 1) (b) 2x (tan (log x) + 1) + x2 sec (log x)
(c) 2x (tan (log x) + 1) + x%sec (logx)  (d) 0
(19) % sin~1 (%’W%Jl—xz] = ©O<x<3) 1
@i+t miT= © — T @ =
5 ‘ll—x 5 Jl—x2 ,)l—x2 Jl—x
(20) % tan™! (lx_+x2) = e . (x, a€ R, xa>1) ]
1 1 1 1
(@ 7542 (®) T+ a2 © 752 T 1:a2 @722
(21) If f(x) = log, (logsx), then f'(x) = ...... . -
1 1 1 1
(@) xlog7 log 3 (®) log3 log x © X logx log 7 ) xlogXx
(22) £ x|x| = ..o (x < 0) ]
(a) 2x (b) —2x ©) Ix| (do
1-¢£2
) fx=T,72,y=7 tz,then%= ...... -
212 2t —2t
(@ 1_2 ®) 1172 (c) 2t @ 7-2
24) % exlogx = ]
(@) x* (1 + logx) (b) x* (©) 1 + logx C R
tan~'x _
(25) % Tt toix Wrt tan lx = ... Tt
1 =1
@ Tizan'x (b) 1+ tan~'x)? © T+ 22 d T2
Section C (3 marks)
2 d’y
(26) If x = at*, y = 2at, then gl ]
=1 L -1 1
(@ 2 (b) 12 © caf D af’
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@7) L cor? I+ -1 e R- {0} -
X X
1 1 2
@) T4 2 ®) 20+ %2 © 14+ x2 ()_1+x
2
(28) Zy’f = -
L L d’y
@ 7 ®) O © 5 @ ——5 2
w dx #) ()
(29) For the curve f(x) = (x — 3)2, applying mean value theorem on [2, 4] the tangent at ...... is
parallel to the chord joining A(2, 1) and B4, 1). ]
(@ (1, 0) (b) (4, 3) © @ 3) @ G, 0
(30) The value of ¢ for the mean-value theorem for f(x) = x3in [-1, 1] is ...... . 1
@+ ®) £ V3 © %1 o
(31) If we apply the Rolle's theorem to f(x) = e*sinx x € [0, 7], then ¢ = ...... . ]
(a) & (b) L OF: @ IF
(32) If we apply the Rolle's theorem to f(x) = x3 — 4x, x € [0, 2], then ¢ = ...... ) ]
@ V3 (b) 2 © % @) -2
Section D (4 marks)
(33) If x = sec® — cosO, y = sec™® — cos™0, then... 1]
@ 2
@ &2 + 4)[%] =n2 (07 +4) ® @ - o(2] -ner-9
2
© 2+ 4)(%) =1 d) 2 + 4)(%) =y>+4
d .o J1+x2—J1—x2 _
(34) dx tan Jl—x2+J1+x2 ...... I)CI <1 I:I

— 1
@ Ji—x* (b) Ji —xx4 © 2 fi-x @ 1:r x*
%(% a2_x2+%sm12) ...... (a>0) 1

—1
(a) ‘/aZ —x? (®) Ja? - 52 © sz —a? @) % +a?

(36) Conditions of Mean Value Theorem are not applicable to ...... in [—1, 1]. 1
(@ f) = [x] ®) f(x) = (©) f(x) = sinx d) f@) =
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(37) For f(x) = x + i, x € [1, 3] the value of ¢ for mean-value theorem and for

f(x) = x> — 4x + 3 for Roll's theorem are ...... . 1
@ V3, 1 ®) 2,1 © ¥3,2 @2, V3

(38) If the tangent to the curve y = x log x at (¢, f(x)) is parallel to the line-segment joining
A(l, 0) and B(e, e), then ¢ = ...... . 1

1 1

(@) <= () log <+ © e e

(39) If we apply the mean value theorem to f(x) = 2sinx + sin 2x, then ¢ = ...... . 1
(@ m (®) % © % @ %

(40) If we apply the mean value theorem to f(x) = (2 +x3 x<1 ]

3x x>1 xe€ [-1,2]

then ¢ = ...... .
@ 2 (®) 0 © 1 @ 5

We have studied the following points in this chapter :

1. Continuous functions 2. Algebra of continuous functions
3. Differentiation and continuity 4. Chain rule

5. Rules for derivative of inverse function 6. Derivative of Implicit function
7. Derivative of parametric function 8. Logarithmic differentiation

9. Second order Derivative 10. Mean value theorems

Prehistory

Excavations at Harappa, Mohenjo-daro and other sites of the Indus Valley Civilization have
uncovered evidence of the use of "practical mathematics". The people of the IVC manufactured bricks
whose dimensions were in the proportion 4:2:1, considered favourable for the stability of a brick structure.
They used a standardized system of weights based on the ratios: 1/20, 1/10, 1/5, 1/2, 1, 2, 5, 10, 20,
50, 100, 200, and 500, with the unit weight equal to approximately 28 grams (and approximately equal
to the English ounce or Greek uncia). They mass produced weights in regular geometrical shapes, which
included hexahedra, barrels, cones, and cylinders, thereby demonstrating knowledge of basic geometry.

The inhabitants of Indus civilization also tried to standardize measurement of length to a high degree
of accuracy. They designed a ruler—the Mohenjo-daro ruler—whose unit of length (approximately 1.32
inches or 3.4 centimetres) was divided into ten equal parts. Bricks manufactured in ancient
Mohenjo-daro often had dimensions that were integral multiples of this unit of length.
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