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ELECTROSTATIC POTENTIAL AND CAPACITANCE

2.1 Intreduction

In Chapter 1, we learned about the types of electric charge, the forces acting between the
charges, the electric fields produced by a point charge and by different charge distributions and
Gauss’ theorem. The force acting on a given charge g can be found by knowing the electric
field. Now, if the electric charge is able to move due to this force, it will start moving and in
such a motion work will be done. So, now in this chapter we shall study in detail, the physical
quantities like electrostatic energy, electrostatic potential that give information about the work
done on the charge. Moreover electric potential and electric field, both the quantities can be
obtained from each other. We will also know the relation between them.

A simple device which stores the electric charge and electrical energy is a capacitor. We
shall also study about the capacitance of a capacitor, the series and parallel combinations of
capacitors, the electrical energy stored in it, etc. The capacitors are used in different electrical
and electronic circuits e.g. electric motor, flashgun of a camera, pulsed lasers, radio, TV etc.
At the end of the chapter we shall see about a device—with the help of which we can get a
very large potential difference—Van de Graaff generator.

2.2 Work done during the Motion of an Electric Charge in the Electric Field

We had seen in Chapter-1 that when an electric

charge g is placed at a point in an electric field E , %\ B

a force ﬁ = qE, acts on it. Now, if this charge ,ﬂ\\\

is able to move, it starts moving. To discuss the Cj?\ ]‘1\

work done during such a motion, initially we will * K

consider a unit positive charge. r;) : A’:?’ P

As shown in the figure 2.1, we want to take a ,X

unit positive charge (g = +1 C charge) from point Q 5 >Y

A to point B, in the electric field produced by a Gh= ’X

point charge (Q), and also want to find the work X 6])3 o
=T

done by the electiric field during this motion.
Many different paths can be thought of to go from
A to B. In the figure 2.1 ACB and ADB paths are Figure 2.1 Work during the Motion of a

. . Charge
shown as illustrations. o
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According to the definition, the force on the unit positive charge at a given point, is

kQ()

the electric field E at that point. According to the formula E = 2 this force varies
r

continuously with distance. Hence the work done by the electric field on unit positive

charge in a small displacement is given by dW = E)d_r) and the work done during

B—) -
Ato B by W, = JE-dr (2.2.1)
A
B
g . xr » . - iy e .
Here, ,[ E-dr is called the line integral of electric field between the points A and B.
A

ACB Path : (1) First, we go from A to C on the circular arc AC having radius OA and
then we go from C to B in OC direction. The electric field produced by Q, is normal to the

- - C_} i
arc AC at every point on it (the angle between E and 4r = 90°). Hence W, = _[E'dr = 0.
A
The work done by the electric field on the path CB, is
B
- o
Wep = [Bdr (2.2.2)
B B n
kQ . . 1 1]
= [ 5drh = kQ)5dr = kQ | ,]rc
1l _ 1
W = kQ |7¢ s (2.2.3)
Thus, on the path ACB, the work done by the electric field
1 _ 1
Wos = Woe t W = kQ |:rC rB] 2.2.4)

Here, since r, < g it is self-evident that this work is positive.
(2) Path ADB : From A to D, just like the above, the work done by the electric field is

1 1
obtained as W AD = kQ [K - E] Moreover, since the electric field is normal to the arc DB,

the work done in this motion = 0.
Hence the work done by the electric field on ADB path is

1
Weos = Wy + W = kQ[a - g] (2.2.5)
Here |r]_)’ | = |r | and I’Al |rg|. Hence from equations 2.2.4 and 2.2.5,
1_1
W =Won =W, =kQ |77 (2.2.6)

Thus, in an electric field, the work done by the electric
charge from one point to the other y

&}{?',_v'fl?"}l(i on the '})I:r';':li‘}

Id in movmg a unit positive

those two points and
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Now, if we move the unit positive charge from point B to A, on any path, the work done
by the electric field, will be given by (according to equation 2.2.6)

1_1
Wy, = kQ [E_K} 2.2.7)
If a unit positive charge is taken from point A to B on any path and then is brought back
to A on any path, a closed loop is formed (e.g. ACBDA or ADBCA) and on this closed loop
the total work done by the electric field (§ ﬁ d_r)); will be W, + W_, = 0 (using equations
2.2.6 and 2.2.7). You are aware of the fact that a field w1th this property is known as a
conservative field. Thus electric field is also a conservative field. [In Standard 11 you had

also seen that the gravitational field is also a conservative field.]

Although we have considered the work done on unit positive charge, all these aspects are
also applicable to the work done on any charge q, but for that, the right hand side of the above
equations for the work, should be multiplied by g. e.g., Work for A to B will be W,, =

> o
qu-dr. Moreover, you will be able to understand that instead of the work done by the

if we want to find the work required to be done tl
i1st the electric d (for the motion without acceleratlon) then the negative sig
have to be put on the rlght hand side of the above equation (2.2.1) for the work Hence for

B
unit positive charge, such a work will be given by WI,:B = —Jﬁcj_)r which is the same in
A

magnitude as work given by equation 2.2.1 but has the opposite sign to it. For charge q such

. . " £ g
a work will be given by W, = —.[qE-dr .
A

B
From this discussion we should remember that ‘[Ed_;, that is the line integral of electric

field between A to B — is the work done by the electric field in moving a unit positive charge

from A to B and it does not depend on the path. Moreover, §EJ; = 0. E-gr is also

sometimes written as Ed_l) where Jl) is also a small displacement vector
2.3 Electrostatic Potential

We know that the work done by the electric field in moving a unit positive (+1 C) charge
from one point to the other, in the electric field, depends only on the positions of those two
points and not on the path joining them.

If we take a reference point A, and take the unit positive charge from point A to B; A

to C; A toD; ... etc in the electric field, then the work done by the electric field is obtained
C D

- [Bar,w, = |B&, W, = [Ba ively. But the ref int A i

as W, = ! r, Wy = 1 r, W, = ! r,... respectively. But the reference point A is

already fixed, hence the above mentioned work depends on the position of the other points
(B, C, D, ...) only. Conventionally the reference point is taken as a point at infinite distance
from the source of electric field. Hence to bring a unit positive charge from that point to a

P
point P in the field, the work done by the electric field is given by the formula W_, = _[Ed_;
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and it becomes the function only of the position of point P. But, if we want to find the work
requ1red to be done against the electric field; in order that the motion becomes “motion

out acceleration,’

P
- -
the formula W' = — JE'dr has to be used.

An important characteristic of an electric field is called clectrostatic potential and with
reference to the work done on unit posmve charge it is defmed as under :

electrostatic poter b |
Here the meamng of agamst the electric field” is actually “againsi

Neld”. We will call the electrostatic potential as electric potentlal in short

Accordmg to the above definition, the electric potential at a point P is given by the formula

P
— _J‘E_d—; 2.3.1)

In other words this formula represents the definition of electric potential.
From this formula the potential difference betwen points Q and P is given by

- > P—) -
Vo-V, = -[E& ~[Ear (2.3.2)
(2.3.3)
(2.3.4)
required to be done to take a unit positive
1arge from P to Q, against the electric fi and in that sense it also shows the potential
of Q w1th respect to P. Very often the potential difference is in short written as p.d. also. The
unit of electric potential (and hence that of the potential difference also) is joule / coulomb
which is called volt (symbol V) in memory of the scientist Volta. i.e., volt = _oule or
coulomb
VvV = % It’s dimensional formula is M'L?T3A.

Electric potential is a scalar quantity. Moreover, we have obtained electric potential from the
vector quantity-electric field B (See equation 2.3.1). In future we will also obtain electric field

from the electric potential. In the calculations involving electric field E, its three components
Ex, Ey, Ez have to be considered and the calculations become longer, while in the calculations
involving the electric potential, only one scalar appears and hence the calculations become
shorter and easier. Hence the concept of electric potential is widely used. Absolute value of
electric potential has no importance, only the difference in potential is important.

4 | ” Physics-III



[For Imformation Omnly : Galvani (1737—-1798) produced electricity by placing two different
metallic electrodes in the tissue of frog. He called it Animal Eleciricity. Volta explained that the
above process had nothing to do with the characteristics of the frog, but one can generate
electricity by placing two dissimilar metallic electrodes on any wet body. He was the one who
designed the electro chemical cell, which we studied earlier as voltaic cell.

The importance of electric potential in electricity is similar to the importance of
temperature in thermodynamics and the height of fluid in hydrostatics. The electricity flows
(i.e. the electric current flows) from an electrically charged material having higher electric
potential to an electrically charged material having lower electric potential. Quite similar to
water, which flows from a higher level to a lower level or like the flow of heat which flows
from a region having higher temperature to a region having lower temperature. Thus, the direction
of the flow of electric current between two materials depends on their electric potentials.]

Iustration 1 : Suppose an electric field due to a stationary A
R I 20X )

—

dr

charge distribution is given by E = ky; + kxj, where k is a

constant. (a) Find the line integral of electric field on the linear

path joining the origin O with point P(2, 8), in the Figure. For OP
(b) Obtain the formula for the electric potential at any point on y=dx

the line OP, with respect to (0, 0) 0 >X

a) The displacement vector g, on the line OP is ar = dx P+ dyj

-

-dr = (kyi + kxj) . (dxi + dyj)
= kydx + kxdy = k(ydx + xdy)
Moreover, on the entire OP line y = 4x (. the slope of a straight line is constant)
sody = 4dx
. The line integral of electric field from O to P, is

@

P P 28 2
[Bdl = k[Odvtad) = [ Wrdrts@dnl — g [8rdr  (a)
0 0 ©, 0) 0

~uf£] -

0

(b) In order to obtain the potential at any point Q(x, ¥) on the line OP with respect to (0,
Q—> -
0) we can use V(Q) = —JE'dl
0

(9]
© V@Q) = - I8kxdx (from equation A)
()}

2 X
- Sk[%] = —4kx?
0
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[lustration 2 : The electric field at distance r perpendicularly from the length of an

infinitely long wire is E(r) = 2negr > where A is the linear charge density of the wire. Find
the potential at a point having distance b from the wire with respect to a point having distance

a from the wire (@ > b). [Hint : J.%dr = In rl.

) ‘ b—) -
Solation : V, — V = —_[E'dr
b a 2

2N

T
= _.[Zneor dr (" Ellar)
a

A bl A b A
T 2me, !Fdr = T 2mg, [In r]a = ~2mg,r [lnb-Ina]

A
~ 2mng

[lna-Inb]
0

A a

= 2mg, In (3)

For reference point a, taking V.= 0

a
A a
‘. Vb = 27E80 ln (b)
Vv
[lustration 3 : An electric field is represented by E) = Ax;, where A = 10 7 Find
the potential of the origin with respect to the point (10, 20)m.

Solution : E = Ax; = 10x;}
©,0

V@, 0) — V(10, 20) = - [ E.g
(10, 20)
©.0 0
- - J (10x1°)-(dxf+dy]"\) — —lexdx
(10, 20) 10
210
= —10["7] = [0 — (=500)] = 500 volt
10

Since V(10, 20) is to be taken as zero,
V(@, 0) = 500 volt.
2.4 Electrostatic Potential Energy

In the previous article (2.2), we had discussed the work done by the electric field on a unit
positive charge and then also on the charge q, during the motion in the electric field. Moreover
we had also talked about the work required to be done by the external force against the
electric field, in which the motion of charge is without acceleration only. Hence its velocity
remains constant and its kinetic energy does not change. But the work done by this external
force is stored in the form of potential energy of that charge. From this, the electric potential
energy is defined as under :

“The work required to be done against the electric field in bringing a given charge
(@), from infinite distance to the given point in the electric field is called the electric
potential energy of that charge at that peoint.” Here ‘““motion without acceleration” is
implied when we mentioned” “work required to be domne.”

» —



From the definitions of electric potential energy and the electric potential, we can write the
electric potential energy of charge g at point P, as

Up= -[4B-@ = -4]E-& 2.4.1)

= gV (2.4.2)

Moreoverl,) we can also call the electric potential at point P as the electric potential energy
of unit positive charge (g = +1 C) at that point. That is,

{electric potential} _ {electric potential energy of unit}

at a given point positive charge at that point

For more clarity in this discussion, we note a few important points as under :

(1) When we bring charge g (or a unit positive charge) from infinite dlstance to the given
point or when we move 1t from one point to the other in the field, the positions of the
sources (charges) producing the field are not char . (We will imagine these sources as
being clamped on the1r pos1t10ns by some invisible force ")

(2) The absolute value of the electric potential energy is not at all important, only the

difference in its value is important. Here, in moving a charge g, from point P to Q, without
acceleration, the work required to be dome by the exiernal force, shows the dlfference
in the electric potential energ1es (U — U,) of this charge g, at those two points.
- -
“ Uy - U, = —q IE-dr (2.4.3)
P

(3) Here, electric potential energy is of the entire system of the sources producing the
field and the charge that is moved, for some omn ion, and when the configuration
changes the electric potential energy of the system also changes. e.g., when the distance
between them is r, it is one configuration and if distance r changes, the configuration is also
said to be changed and hence the electric potential energy of the system is also said to be
changed. But as the conditions of the sources producmg the field are not changed, the entire
change in the electric potential energy is experienced by this charge ¢ only which we have
Hence we are able to write U, = U, as the difference in potential energy of this
. Because of this reason we have mentioned “potential energy of charge g” for
equat1on 241 and ‘potential energy of unit positive charge” in the discussion that followed it.
2.5 Electric Potential due to a Point Charge

n

s

We want to find the electric potential V(P), due to a vA ’{o oo
point charge g, at some point P, at a distance r from it. /

For this we will put the origin of co-ordinate axes ﬂ?/
0, at the position of that charge. See figure 2.2. Here P.," 2

oP = 7. According to the definition of electric poten-
tial we can use the equation.

ﬁ
P—> - L
vP) = -[Bar (2.5.1)
Moreover, we can also write this equation in g >X
another form as
r i 2 Potential due to Poin
V() = IE"; 2.52) Figure 2.2 L due to
P harge
P oo
- > - -
because, JE-dr = IE ‘dr .
e P
. . k
At this point P, E= —;I 7 (2.5.3)
,
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. From equation 2.5.2

V(P) = g (2.5.6)
or V(P) = 41:80% (2.5.7)

This equation is true for any charge, positive or negative. The potential due to a positive
charge is positive and that due to a negative charge is negative (as q is to be put with negative
sign in the above equation.)

It is self evident from equation 2.5.6 that as the distance r increases, the electric potential

decreases as 1. In case of potential also superposition principle is applicable. To find the

r

electric potential due to many point charges we should find the potential due to every charge
according to equation 2.5.7 and they should be added algebraically.

Mustration 4 : A point P is 20 m away from a 2 QUC point charge and 40 m away from
a 4 UC point charge. Find the electric potential at P.

(1) Find the work required to be done to bring 0.2 C charge from infinite distance to the
point P.

(2) Find the work required to be done to bring —0.4 C charge from infinite distance to the

point P. [k = 9 X 10° N m? C?]

kg, kg, 4.9
Solution : V, = 55 4+ 7= = k|7t
Z 9w 100 | 2X107°  4x10° ] _ jeny Lo
= 20 40 = vo
(1) W, =V, g,' = (1800)(0.2) = 360 J.

2y W,=V, qz' = (1800)(—0.4) = =720 J
2.6 Electric Potential due to an Electric Dipole

equator 5 We have seen in Chapter-1 that two equal and

: opposite charges (+ g and — ¢g) separated by a
: P .. . _ . L
| » finite distance (= 2a) constitute an electric dipole.
1 ”’.
i ’/::' Such a dipole is shown in the figure 2.3, with

(r>>2a) » z”’ the origin of co-ordinate system O at its mid-point.
1 /’
[ ’// !f The magnitude of the dipole moment of the dipole is
et Bf g P = q(2a) and its direction is from negative to the
] td
= A positive charge that is, in AB direction.

We want to find the electric potential at point P
far away from the mid-point O of dipole and in the

direction making an angle © with the axis of the
dipole. Let OP = r, AP = r, and BP = r,. At P, the
electric potential is equal to the sum of the poten-

tials produced by each of the charges.
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1 g 1 —g
VP = Tag v, f Tmey T (2.6.1)
g 11
T dmey [, T
q r-rn
= 47[80[ ., } (2.6.2)

Since P is a far distant point, r >> 2a and hence we can take AP || OP || BP. In this
condition the figure 2.3 shows that

for numerator of equation (2.6.2), r_—r_=AM=2a cos0
and for denominator, r_=r_=r

(2.6.3)

We have considered a very far distant point as compared to the length (2a) of the dipole.
The molecular dipoles are very small and such an approximation is very well applicable to them.
From equations (2.6.2) and (2.6.3), we get

q 2a cosB
V(n) = 41580[ 2 ] (2.6.4)
1 pcosB
= E 2 (2.6.5)
Writing the unit vector in the direction 6;> as p, we can wirte ;’.f = p cos0.
. - 1 p.r
S V() = dme, r—z(for r >> 2a) (2.6.6)

Note : The dipole obtained in the limits g — o and a — 0, is called the point dipole. For
such a point dipole the above equation is more accurate, while for the physical dipole - found
in practice - this equation gives an approximate value of the electric potential. Let us note a
few points evident from equation (2.6.4), as under :

(1) Potential on the Axis : For a point on the axis of the dipole

O0=0orm ... V=2x7"75

From the given point, if the nearer charge is +g, then we get V as positive and if it is
—q, then we get V as negative.

(2) Potential on the Equator : For a point on the equator 6 = V=0

I
2
(3) The potential at any point depends on the angle between its position vector 7 and ;;’

1
(4) The potential due to a dipole decreases as 2 with distance (while the potential due

~|=

to a point charge decreases as with distance). We have seen in Chapter 1 that the electric

1
field due to a dipole decreases as 73)

Iustration 5 : When two dipoles are lined up in opposite direction, the arrangement is
known as a quadruple (as shown in the Figure). (1) Calculate the electric potential at a point
z = z along the axis of the quadruple and (2) If z >> d, then show that,
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A )
; Q 24
a V@ = Fne;
k—z—>
A R 7 Note : 2|Q|d* is called the quadruple moment.
Q 2Q *Q P Solution : (1) Let z be the Z co-ordinate of point P.
The electric potential at point P, due to +Q charge
(which is at the left hand side of the origin) is,
_ _kQ
Vi = z+d 1)

The electric potential at point P due to the +Q charge which is at the right hand side of
the origin is,

- _kQ
v, = z—d 2
The electric potential at point P, due to —2Q charge present at the origin is,

— k(2Q)
v, = - = 3)

». The total potential at point P,
V(z) =V, +V,+V,

1 1 2 2z 2 _2d*
= kQ [“—d%——d‘ﬂ = kQ [zz_dz z] = "QLuz_dz)]

(2) If z >> d, we can neglect d’ in comparison with z? in the denominator of right hand
side of the above equation.

kQ(2d>)
3

__Q 22
_41'580 23

S V() =

IMustration 6 : Charge Q is distributed uniformly over a non-conducting sphere of radius
R. Find the electric potential at distance r from the centre of the sphere (r < R). The electric

. . . 1 i
field at a distance r from the centre of the sphere is given as E % r#. Also find the

potential at the centre of the sphere.
Solution : The electric potential on the surface of such a sphere is,

VR) = 41+80 9

R
r
- -
As a result, we can use the equation V(r) — V(R) = —IE- r
R
r 1 Q
. V(r) — V(R) = _I4n80 Frdr F o7 (d_;' = dr?)
R
r 27"
=—4Q3err = - Q3|:r7:|
meR™ 2 dme R R

=__Q |2 R
4ngR® | 2 2
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. V()

Il
=
Z
+
w
| p—— |
N|77N
[
ST
_

. L Q _Q 2
- V) = Zmgy R T osaer? R -7

1 Q r?
. V() E oI (3_FJ’ r <R

At the centre of the sphere r = 0, .. V (centre) = 4,:80 (%J

2.7 Electric Potential due to a System of Charges

In a system of charges, point charges could have been distributed descretely (separated
from each other) while in some system they could have been distributed continuously with each
other. In some system of charges the distribution of charges could be a mixture of any type
of these two distributions. X

(a) Descrete Distribution of Charges

In figure 2.4, point charges q,, q,, ¢, -..... q_are
shown as distributed descretely. The position vectors of
these charges with respect to the origin of co-ordinate

system are ., r,,..7 respectively. We want to find the

electric potential due to this system, at point P with

position vector 7. For this we will find the electric

potential due to every point charge and then will make
summation.

That is, V = V1 + V2 + ... + Vn 2.7.1) Figure 2.4 Potential Due to Descrete
Charges
1 4 1 49 )
V= — = + —— = + ... + = 2.7.2
4, Ny 4me, " 4me, - )
Where r,, = distance of P from ¢, = |7 - r .
Similarly Fops s Ty 8TE the corresponding distances.
q q q
1 1 1 2 1 n
= + o - 2.7.3
Ameg 1T 1 A 17 ) Ameo 177 | @79
V= S22 2.7.4)

(b) Electric Potential due to a Continnouns Distribution of Charges :
Suppose in a certain region electric charge is distributed continuously. Imagine this region
to be divided in a large number of volume-elements, each one with extremely small volume. If

the volume of such an element having position vector 7' is dt' and at this position the

volume-density of charge is p(7 '), then the charge in this element is p(7 ') dt', and it can
be treated as a point charge. The electric potential due to this small, volume element at point

P having the position vector 7, is
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N
1 p(rhdr’
dv = Tnes |2 2.7.5)
ey | r—rel
By integrating this equation over the entire volume of this distribution, we get the total
potential at point P, which can be written as under :

V(7)) = L [ R (2.7.6)

4'71-’80 volume | 7= 71

If the charge distribution is uniform, p(7 ') can be taken as canstant (= P).

(c¢) A Spherical Shell with Uniform Charge Distribution :

In Chapter 1, we had seen that the electric field at a point outside and at a point on
the surface of spherical shell with uniform charge distribution is equal to the electric field
obtained by considering the entire charge of the shell as cencentrated.at the centre of the shell.

r

We have obtained the electric potential from the electric field (V =—J']_E)-d_r) ). For electric

potential also the entire charge can be considered as concentrated at the centre of the shell.
Hence the potential at a point outside and at a point on the surface of the shell having charge
g and radius R, is

_ 1
V= 4me,

~ e

(for r = R) (2.7.7)

where r = distance of the given point from centre of shell.

Moreover, we also know that the electric field inside the shell is zero. Hence during the
motion of unit positive charge inside the shell no work is required to be done. Hence the
potentials at all points inside the shell are equal having the value equal to the potential on the

. _ 1 4q
surface of that shell. i.e. V = —47[80 R (for r £ R) (2.7.8)

(Note that here, only that work is accounted for which is done during the motion of unit
positive charge from oo to the surface of the shell.)
2.8 Equipotential Surfaces

An equipotential surface is that surface on which the electric potentials at all points

are equal.

A One Equipotential The electric potential due to a point charge is given
Surface 1
by V= — 4 Hence if r is constant, V also becomes
dng, r
constant. From this we can say that for a single point
@ charge ¢, the equipotential surfaces are the surfaces of
Other Equipotential the spheres drawn by taking this charge as the centre.
Surface (See figure 2.5). The potentials on two such different
surfaces are different but for all the points on the same
\A surface the potentials are equal. The electric field
‘ , produced by a point charge is along the radial directions
Figure 2.5 Equipotential Surfaces

drawn from it. [For +¢ they are in radial directions going
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away from it and for —g coming towards it.]. These radial lines are normal to those equipotential
surfaces at every point. Hence at a given point the direction of electric field is normal to an
equipotential surface passing through that point. We shall now prove that this is true not only for
a point charge but in general for any charge configuration.

- . . . . . - 1 . .
Suppose a unit positive charge is given a small displacement d! on the equipotential
surface (along this surface), from a given point. In this process the work required to be done

against the electric field (by the external force) is dW = —E-dl = potential difference
between those two points.

But the potential difference on the equipotential surface = 0.
E-dl =0 = E dl cos® = 0, where O = angle between E and d7
But E#0anddl #0 .. co®=0 .. 6=12 - E L ar.

But dl is along this surface. Hence the electric field E \ > \ >E
is normal to the equipotential surface at that point. 5 N

Like the field lines, the equipotential surface is also a useful >Y“ ----- —>
concept to represent an electric field. For a uniform -electric  Eem —>
field prevailing in X-direction, the field lines are parallel to N >O\\ =
X-axis and equispaced, while the equipotential surfaces are \z

Figure 2.6 Equipotential Sur-

normal to X-axis (i.e. parallel to YZ plane.) See figure 2.6. face for a Uniform Electric Field

(a) Equipotential Surfaces (b) Equipotential Surfaces of a System of

of a Dipole Two Positive and Equal Charge

(Only For Information) (Only for Information)
Figure 2.7
The equipotential surfaces of an electric dipole are shown in figure 2.7(a).
The equipotential surfaces of a system of two positive charges of equal magnitude are

shown in figure 2.7(b).

2.9 Relation between the Electric Field and the FElectric Potential

P
In article 2.3, we have obtained the electric potential V = (—J.E-c?;) from the electric field.

Now, if we know about the electric potential in a certain region, we can get the electric field
from it as well.

We have seen in article 2.3, that from the line integral of electric field between points
P and Q, we can get the potential difference between those two points. (Equation 2.3.4) as
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V. -V, =AV = —[E-ar (2.9.1)

on—0

Now, if these points P and Q are very close to each other, then for such a small

displacement d 7, integration is not required and only one term E-dl can be kept.

. dV =-E-dl (2.9.2)
If d7 is in the direction of E, E-dl =E dl cos0° = E dl

. dV = -E dl

. — —dV

. E = dl (2.9.3)

This equation gives the magnitude of electric field in the direction of displacement d 7. Here

% = potential difference per unit distance. It is called the potential gradient. Its unit is %. From

alz

equation (2.9.3) the unit of electric field is also written as %, which is equivalent to

If we had taken the displacement d T not in the direction of electric field, but in some

other direction, then % would give us the component of electric field in the direction

of that displacement. e.g. If the electric field is in X-direction only and the displacement is
in any direction (in three dimensions), then

E =EJf and d7 = dxi + dyj + dik

wdV = — (B,) . (dxi + dyj + dzk)

= -E, dx (2.9.4)
; _ —dV
. E, = — (2.9.5)

Similarly, if the electric field was only in Y and only in Z direction respectively, we would get,

== (2.9.6)
_ —dV
E =4 (2.9.7)

Now, if the electric field also has all the three (x—, y—, z—) components then from
equations (2.9.5) (2.9.6) and (2.9.7) we can write as under.

=V —V —0V

E = % Ey = 2y E, = o9z (2.9.8)
and E = —(%—Zﬁ%—‘y’ﬂ%—‘z’ﬂ (2.9.9)
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Here %—Z, %—;,, %—\z] show the partial differentiation of V(x, y, z) with respect to

X, ¥, z respectively. Moreover, the partial differentiation of V(x, y, z) with respect to

x means the differentiation of V with respect to only x (i.e. %—Z) by taking y and z in the
formula of V, as constants.

In equation (2.9.1), the values of E at all points between P and Q come in the calculation,
while equations (2.9.3) and (2.9.8) give relation between the potential difference near a given
point and the electric field at that point.

The direction of electric field is that in which the rate of decrease of electric potential with

distance (%) is maximum and this direction is always normal to the equipotential surface.

This entire discussion is based on the property that electric field is a conservative field.

2.10 Potential Energy of a System of Point Charges

OA=7>0B=7%>0C =7
As shown in the figure 2.8, in a system of charges 1’ 2’ ’
three point charges g,, g, and g, are lying stationary at Y
points A, B and C respectively. Their position vectors a, r 4,
A 12 B
from the origin of a co-ordinate system are r, 7, and <. i
a5
73) respectively. We want to find the potential energy of 0 X
this system. Figure 2.8 System of Point Charges

In the beginning we shall imagine that these charges are lying at infinite distances from the
origin and also from each other. In this condition the electric force between them is zero, and their
potential energy is also zero.

Moreover, the electric fields at A, B and C are also zero. From such a condition the work
required to be done by the external forces (against the electric fields) to arrange them in the
above mentioned configuration is stored in the form of potential energy of this system.

First, we bring the charge g, from infinite distance to point A. In this process since no
electric field is present, the work done by the external force against the electric field is W,
= zero. (You know that here the field produced by this charge itself is not to be considered.)

Now the charge set on g,, produces an electric field and electric potential around it. The

potential due to this charge g, at point B separated by distances r,, from it is (from equation
2.5.7) is

1 4
Vo = T (2.10.1)
Where 7, = Ir_z’ - ?;I

Hence the work required to be done by the external force to bring charge g, from

9,9
infinite distance to point B, is W, = ¢,V = Flso ﬁ (2.10.2)
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(from equation 2.4.2).

(If we want to consider a system of these two charges onl , then the total work W, +
__1 9% lectri (a1 ¢ i
W, = dne, o is the electric potential energy of this system.)

Now ¢, and g, both will produce electric fields and electric potentials around them. The

_ 1 4 . 1 %
- 41[60 N3 411:80 o

electric potential produced due to them at point C is V (2.10.3)

Therefore, the work required to be done to bring charge g, from infinite distance to point
C is

W,= (Vog,
1 9% 1 94
- (2.104)

Hence the total work to be done to set these three charges in the above arrangement (=
W, + W, + W,) is the electric potential energy U of this system.

1 9% 1 9% 1 D93
- U = 41580 iy 41[80 T3 47[80 Tys (2105)
1 |99 99 9%
= ng, { Ha o he Ty } (2.10.6)
Q9 3 , 99
= k[_+_+_} 2.10.7
2 3 ™3 ( )
From this, in general, the potential energy of a system of n—charges can be wirtten as
n kqd4q.
U=273" (2.10.8)
=1y
i<j

As the electric field is conservative; it does not matter, which charge comes earlier or later.
In that case the electric potential energy does not change (and given by equation 2.10.8 only)

2 G Illustration 7 : Calculate the potential energy of the
gant " A system of charges, shown in the Figure.

5 1 : The total potential energy of the system of

% fls charges is equal to the sum of the potential energy of all the

s a pairs of charges.

0 (1) There are 12 pairs of charges like the AB pair. The

4 distance between the electric charges in such pairs is equal
e ~F  wa

i i f The potential energy of all such pairs is

2
A a B U1=’%x12 (1)

(2) There are 12 pairs of charges like the AC pair. The distance between charges in such

a pair is a+2. ("~ AC = JAB’+AC? = a®+a® = a42). Their potential energy is,

_ kg
U, = o5 X 12 2)
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(3) There are 4 pairs of charges like the AG pair. The distance between charges in these

pairs is equal to a.3. (= AG = VAC?+CG? = V2d>+d® = a.f3)

2
Their potential energy is U; = % X 4

(4) There are eight pairs of electric charges similar to AO in which distance between
charges is M. (AO = AG _ M)
2 2 2
_ _kq2q
(a

". total potential energy U = U, + U, + U; + U,

Their potential energy is U, =

N|§|

JXS 4)

Cor o 12kg® . 12kg’ | 4kg® 32k

. U a + aﬁ + a.\/§ a.Jg
- kq [12+ +-L 32} = k_[121+ E}
NP W25

2.11 The Potential Energy of am Electric Dipole in an External Electric Field

As shown in figure 2.9, an electric dipole AB is AB = 24, AC = ABcos®

. . . = N
placed in a uniform electric field E in X—direction such

that the axis of the dipole makes an angle 6 with the field >E
E. Its dipole moment is g(2a) in AB direction. The /' ]?+q

electric potential energy of this dipole means the algebraic R a0 / R

sum of the electric potential energies of both of its ‘:// > X
charges (+g and —q). We arbitrarily take the potential at =g Hmrmmmmmerenemnd

the position of —g charge as zero. Hence its potential 5 5

energy becomes zero. Now we will find the potential

enegy of +q charge with respect to it and it will become Figure 2.9 Pc

the potential energy of the entire dipole. D
As the electric field is only in X-direction,

E = —ﬁxV _ —(VBA;VA)

= iy (2 V= 0) @.11.1)
. Vp = —E (2a cos0) 2.11.2)
*. Potential energy of +gq at B, is
U = gV, = ¢q[-E 2a cos0] (2.11.3)

= —E(g 2a cos0)
= —E p cosO [ ga) = p]

~E-7 (2.11.4)

Electrostatic Potential and Capacitance 59



-

. The potential energy of the entire dipole U= —EF =-p- p (2.11.5)
We note a few points :

(i) If the axis of the dipole is normal to the electric field, then 0 = % and

U =Ep cos5 =0

[S1E]

(i) If the axis of the dipole is parallel to the field. (AB I E)
Then O = 0 .. U = —pE. This is the minimum value of potential energy. Hence the dipole

tries to arrange its axis parallel to the electric field, so that p becomes parallel to E. In this

condition dipole remains in stable equilibrium. (A system always tries to remain in such a state
that its potential energy becomes minimum.) (For 6 = &, the dipole is in an unstable equilibrium.)
2.12 Electrostatics of Conductors

It is interesting to know the effects produced when metallic conductors are placed in the
electric field or when electric charges are placed on such conductors.

(a) Effect of Extermal Electric Field on Conductors :

In a metallic conductor there are positive ions situated at the lattice points and the free
electrons are moving randomly between these ions. They are free to move within the metal but
not free to come out of the metal. When such a conductor is placed in an external electric

. = . L .
field E ', the free electrons move under the effect of the force in the direction opposite to the
field and get deposited on the surface of one end of conductor. And an equal amount of
positive charge can be considered as deposited on the other end. Thus electric charges are

1

2 . . . g . . .
induced. These induced charges produce an electric field E " inside the conductor, in the
direction opposite to the external electric field E . When these two electric fields become

equal in magnitude, the resultant (net) electric field (E) inside the conductor becomes zero.
(See figure 2.10). Now the motion of charges in the conductor stops, and the charges become
steady (stationary) on the end-surfaces.

E Now let us consider a Gaussian Surface shown by
dotted line, inside the conductor and close to the surface,
as shown in figure 2.10. Every point on this surface is

C g = .
a point inside the conductor; the electric field E on this
entire surface is zero. Hence the electric charge enclosed

Gaussian Surface 55 q
] by it is also zero. (. |E- = 7).
Figure 2.10 C y ( J E-dr g )

Thus in the case of a metallic conductor, placed in an external electric field,

(1) A steady electric charge distribution is induced on the surface of the conductor.

(2) The net electric field inside the conductor is zero.

(3) The net electric charge inside the conductor is zero.

(4) On the outer surface of the conductor, the electric field at every point is locally normal
(perpendicular) to the surface. If the electric field were not normal (perpendicular) a component
of electric field parallel to the surface would exist and due to it the charge would move on the
surface. But now the motion is stoppd and the charges have become steady. Thus the
component of electric field parallel to the surface would be zero, and hence the electric field
would be normal to the surface.
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(5) Since E = 0 at every point inside the conductor, the electric potential everywhere inside
the conductor is constant and equal to the value of potential on the surface.

(6) If there is a cavity inside the conductor then even when the conductor is placed in an

external electric field (E ", the net electric field inside the coductor is zero and also inside the
cavity it is zero. Consider a Gaussian Surface around the cavity as shown in the figure 2.11.
Since every point on this surface is a point inside the conductor, the electric field on this entire
surface is zero.

Hence the total charge on the surface of the cavity is zero, Ga“SSia? Surface E'
\
(Jﬁd_s) = ai) And there is no charge inside the cavity. —
0 — (@)
. . . . . _-a .V‘ - '.:
Hence the electric field everywhere inside the cavity is zero.) >

This fact is called electrostatic shielding. If we are Figure 2.11
sitting in a car and suppose lightning strickes, we should Cavity in a Conductor
close the doors of the car. (we suppose the car is fully made of metal !) By doing so, we
happen to be in the cavity of car and we are protected due to electrostatic shielding.

(b) Effects Produced by Putting Charge on the Conductor :

In the above discussion we considered the effects produced when a metallic conductor is
placed in an external electric field. Now we note the effects produced when a charge is placed
on a metallic body, in the absence of an external electric field.

(1) Whether a metallic conductor is put in an external electric field or not and whether a

charge is put or not, on it, in all such (but stable) conditions the electric field everywhere
inside the conductor is always zero. This is a very important and a general fact. (ThlS can
be taken as a property to deﬁne a conductor)

(2) The charge placed on a coductor is always distributed only on the outer surface of

the conductor. We can understand this by the fact that the electric fleld inside a coductor is
zero. Consider a Gaussian Surface shown by the dots inside the surface and very close to it,
(figure 2.12). Every point on it is inside the surface and not on the surface of conductor Hence
the electric field at every point on this surface is zero. Hence according to Gauss’s theorem
the charge enclosed by that surface is also zero.

(3) In a stable condition these charges are steady on the surface.
This shows that the electric field is locally normal to the surface.
(See figure 2.12).

(4) The electric field at any point on the charged conductor is

- ) ;
E = 83 A, where 4 = unit vector coming out from the surface
(]

Figure 2.12

normally. To prove this, we consider a Gaussian surface of a pill-box
(a cylinder) of extremely small length and extremely small cross-section ds. A fraction of it is
inside the surface and the remaining part is outside the surface. The total charge enclosed by

this pill-box is ¢ = 0ds; where ¢ = surface density of charge on the conductor. At every point

= . ..
on the surface of the conductor E is perpendicular to the local surface element. Hence it is

- -
parallel to surface vector (E |l ds).
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But inside the surface E) = 0. Hence the flux coming out from the cross-section of pill-

.. .. . -
box inside the surface = 0. For its side the area vector (surface vector) is normal to E . Hence
flux through it is zero. The flux coming out from the cross-section of pill-box outside the

surface is Ed?s = Eds.

. Total flux = E ds

d.
According to Gauss’s theorem, E ds = % = GS—OS (2.12.1)
“E=2% (2.12.2)
£
In the vector from E = 81 ') (2.12.3)

0

. . . % . . . . . .
If o is positive, E is in the direction of normal coming out from the surface. If O is
negative E is in the direction of normal entering into the surface.

(5) If some charge is placed inside a cavity in the conductor, then the charges are so
induced on the surface of the cavity and on the outer surface of conductor that the electric
field in the region which is inside the conductor but outside the cavity becomes zero. The
electric field inside the cavity is non-zero and the electric field outside the conductor due to that
charge is also non-zero.

[Note (For information only) : In the above discussion we have considered the
coductors to be insulated.

The sharp ends of the conductor have a large electric charge density. The clectric field
near such a region is very strong. This strong electric field can sirip the electrons from the

ce of the metal. This event is known as Corona discharge. In general, this event is
called dielectric breakdown

The electrons escaping the surface of a metal perform an accelerated motion, colliding
with the air particles coming in their way. The excited atoms of the energetic particles emit
electromagnetic waves and a greenish glow is observed. Apart from the above process, the
ionization of the air molecules also takes palce, during collision

Sailors long ago saw these glows at the pointed tops of their masts and spars and
dubbed the phenomenon St. Elmo’s fire.]
2.13 Capacitors and Capacitance

Consider an insulated conducting sphere as shown in the figure
2.13. Suppose we go on gradually adding positive charge on this
sphere. As the charge on the sphere is gradually increased, the

Conducting Sphere

potential (V) on the surface of the sphere and the electric field

around the sphere also go on gradually increasing. In this process at

Non-conductin . . . .
5 some one stage the electric field becomes sufficiently strong to ionize

Stand

the air particles around the sphere. Hence the charge on the sphere
is conducted through air and insulating property of air gets distroyed

Figure 2.13 (i.e. it is not sustained.). This effect is called dielectric breckdown.
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Thus the charge on the sphere is leaked and now the sphere is not able to store any additional
charge. During this entire process the ratio of the charge (Q) on the sphere and the potential (V)

on the sphere remains constant. This ratio is called the capacitance of the sphere. [C = %]

772777777 772777777 777777772 772777777
Figure 2.14

The maximum electric field upto which an insulating (non-conducting) medium can maintain

its insulating property is called the dielectric strength of that medium (or the minimum electric

field which starts ionization in a given non-conducting-medium is called its dieleciric strength.).

For air the dielectric strength is nearly 3000 ny—m

Now, if we want to increase the capacity of the above mentioned sphere to store charge
(capacitance C), then place another, insulated conducting sphere near the first one. So, electric
charge is induced in this second sphere. See figure 2.14(b). If the second sphere is connected
to Earth, as in figure 2.14(c) electrons from Earth will flow to it and neutralize the positive
charge in it. Now due to negative charge on the second sphere the potential on the surface
of the first sphere and the electric field near it are decreased. Now the capacity to store
charge on the first sphere increases, as compared to earlier. In this condition also the ratio of
the electric charge Q and the p.d. (V) between two spheres at every stage is found to be
constant. This ratio is called the capacitance C of this system of two spheres. The value of
this capacitance depends on the dimensions of the spheres, their relative arrangement and the
medium between them.

A irom eacl othel is called 1 Capaci-

tor.”” These conductors are called the plates of the capacitor. The conductor with positive
charge is called the positive plate and the one with negative charge is called the negative plate.
The charge on the positive plate is called the charge on the capacitor and the potential

difference between the two conductors is called the potential difference (V) between the two
Q

plates of the capacitor. Here the capacitance of the capacitor is C = v
The SI unit of capacitance is coulomb / volt and in memory of the great sceintist Michael
Faraday it is known as Farad. Its symbol is F. Farad is a large unit for practical purposes and
hence smaller units microfarad (1 UF = 10°F) nanofarad (1 nF = 10'9F) and picofarad
(1 pF = 107?F) are used in practice.
A capacitor having a definite capacitance is shown by the symbol |- and the one having

a variable capacitance is shown by the symbol 7”&

Moreover, a single conducting sphere of radius R and having charge Q can also be
considered as a capacitor, because it also has ‘some’ capacity to store charge. For such a
capacitor other conductor (with —Q charge) is considered to be at infinite distance (separation).
Taking the potential at infinite distance from the sphere as zero, the potential on the surface

of this sphere is V = % Hence the potential difference between this sphere and the other
one imagined at infinite distance is also V = %
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. The capacitance of this sphere is C = % = % = % = 4ne R (v K = 47:_1.90)- Earth
can also be considered as a capacitor. You may calculate its capacitance.
2.14 Parallel Plate Capacitor

In such a capacitor, two conducting parallel plates of equal area (A) are insulated from
each other and kept at a separation of (d). (See figure 2.15)

Considering vacuum (or air) as the non-conducting medium between them, we shall obtain
the formula for its capacitance.

Suppose, the electric charge on this capacitor is Q. Therefore, the value of the surface
Q
A
the dimension of each plate. Due to this, the non-uniformity of the electric field near the ends

density of charge on its plates is O = The value of d is kept very small as compared to

. . . C -
of the plates can be neglected and in the entire region between the plates the electric field E
can be taken as constant.

+ - The uniform electric field in the region between two plates due
E1:0/2€0
=—> .. . G . N .o
to the positive plate is E, = 2¢, In the direction from positive to
EZZG/ZEO
- negative plate. (2.14.1)
e Similarly the uniform electric field in the same region due to
= (¢]
_
- . G
the negative plate, is E, = 5.~ (2.14.2)
Figure 2.15 Parallel Plate 0

{anamtor
Capacitor

(Also in the direction from positive to negative plate.)

Since these two fields are in the same direction, the resultant uniform electric field is

o c o
E = El =+ E2 = 2_80 =+ % = £ (2.14.3)
It is in the direction from positive to negative plate.
- 2
. E = A (2.14.4)

In the regions on the other sides of the plates, E, and E, being equal but in opposite
direction, the resultant electric field becomes zero.

If the potential difference between these two plates is V, then V = Ed (2.14.5)
. From equations (2.14.4) and (2.14.5),
- Q
V = aOAd (2.14.6)
From the formula C = %, we get the capacitance of parallel plate capacitor as
_ A
= X 2.14.7)

From equation (2.4.7), it is clear that if the distance between two plates each of

(8.85x1072)(1)

107
If we want 1F capacitance, then the area of each plate kept at a separation of

1 m X 1 mis 1 mm, its capacitance is C = = 8.85 X 107°F.

Cd 1107
1 mm should be A = .~ = (—_)12
0 8.85x10

breadth of each plate should be nearly 1 X 10* m = 10 km.

= 1.13 X 10® m% Thus each of the length and the
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2.15 Combinations of Capacitors

The system, formed by the combination of capacitors having capacitances C,, C,, ...... » C,
has some equivalent (effective) capacitance C. We shall discuss two types of combinations.

(a) Series Combination of Capacitors

The arrangement formed by joining the capacitors having capacitances C, C,, C,, ..... , C,
by conducting wires as shown in figure 2.16 is called the series combination of capacitors.

C C C C,
s o e ey
V] \p) V3 Vi
I
\%
Figure 2.16 Series Combination of Capacitors

In such a condition the charge on every capacitor has the same value Q. As (—Q) charge
is deposited by the battery on one plate, it induces (+Q) charge on the other plate. For this
(—Q) charge from the second plate will be deposited on the near plate of the next capacitor.
This induces +Q charge on the other plate. This continues further. Thus all capacitors have
equal charge. but the potential difference between the two plates of different capacitors is
different. From the figrue it is clear that

V=V +V,+V, + .. +V, (2.15.1)
—%+(%+C%+ ..... +Cg (2.15.2)
_Q
(- C = Vo e etc.)
A% 1 1 1 1
6:C_1+C_2+C_3+ ...... +C—n (2.15.3)

= % (2.15.4)

1 _ 1 1 1 1
c - G + C, + C3 + e + C, (2.15.5)

Thus the value of effective capacitance is even smaller than the smallest value of
capacitance in the combination.

[Note that here the formula obtained for series combination is similar to the formula for
effective (equivalent) resistance obtained for the parallel combination of the resistances.]

(b) Parallel Combination of Capacitors

The arrangement formed by joining the capacitors having capacitances C, C,, C; by
conducting wires as shown in figure 2.17 is called the parallel combination of capacitors.
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¢ In such a combination the potential difference (V) between

o I the plates of every capacitor is the same and is equal to the
4 potential difference between their common points A and B. But
+ 2 - 5 the charge Q on every capacitor is different.
A
@ Here, Q, = C, V
G
N Q,=¢, V}
Q3
Q,=C Vv (2.15.6)
i And the total electric charge
+|' =
v Q =0Q, +Q, +Q
Figure 2.17 bination = C1V + CZV + CBV
' = (C, + C, + C)V (2.15.7)
If the effective capacitance of this parallel combination is C, then
- Q _
C=5=C+C, +C (2.15.8)
If such n-capacitors are joined in parallel connection, the effective capacitance is
C=¢C +C, +C, + ... + C, (2.15.9)

Here, as the values of capacitances are added the value of effective capacitance is even
greater than the largest value of capacitance in the connection.

[Note that the formula obtained here for parallel combination is similar to the formula for
effective (equivalent) resistance obtained for the series combination of resistances.]

Illustration 8 : Prove that the force acting on one plate due to the other in a parallel plate

2
capacitor is F = % %
Solution : The electric field due to one plate is E, = 2070 )]

A second plate having charge GA is present in the above electric field.
. The force acting on the second plate is
F = (CA)E,

Substituting the value of E, from (1), we have,

A
F= %2
2¢,
But ¢ = %
@ A
F _ 2 = Q_2 — Q2/d — Q_2 (.. ﬁ - C)
: 2g, 2gpA 2e0A/d 2dC T ood
R = lov? (" Q = CV)
) 2 d )

IMlustration 9 : Figure shows an infinite number of conducting plates of infinitesimal
thickness such that consecutive plates are sparated by a small distance dx spread over a
distance d to form a capacitor. Calculate the value of the capacitance of such an arrangement.
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‘Y . . . E4A
Solution : The capacitance of each of the capacitors in the above arrangement, dC = %

All these capacitors are in series combination with each other.
Therefore the total capacitance C is obtained from

1 _ L 4, 1
C dC+dC+"'

dx

= 5A T gA T o

1&

=8(+A(dx+dx+ ...... + dv)

This is equivalent to the capacitance of the capacitor formed by the first and the last plate
of the above arrangement.
2.16 Energy Stored in a Charged Capacitor

In order to establish a charge on the capacitor, work has to be done on the charge. This
work is stored in the form of the potential energy of the charge. Such a potential energy is
called the energy of capacitor.

Suppose the charge on a parallel plate capacitor is Q. In this condition each plate of the
capacitor is said to be lying in the electric field of the other plate.

The magnitude of the uniform electric field produced by one plate of capacitor is

o)

2e, (2.16.1)

Q

where ¢ = A and A = area of each plate.

Hence by taking arbitrarily the potential on this plate as zero, that of the other plate at

distance d from it will be = [;To]d (2.16.2)

From this, the potential energy of the first plate is zero and that of the second plate will be
= (potential) (charge Q on it)

[%}Q (2.16.3)

. Energy stored in the capacitor

_odQ _ (QY4Q _ @
U, = 2e, = (AJZSO = Ze,Ald (2.16.4)
- <
G (2.16.5)
g,A . .
where, C = OT = capacitance of capacitor.
Moreover, C = % From equation (2.16.5) and this formula we can write
_ ¥Q
U, = - (2.16.6)
— w2
and U, = 2CV (2.16.7)
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We have derived these equations (2.16.5), (2.16.6) and (2.16.7) for the parallel plate
capacitor, but in general they are true for all types of capacitor.
To show energy stored in the capacitor in the form of energy density :

The energy stored in the capacitor is U, = %CVZ. This energy is stored in the region
between the two plates, that is, in the volume Ad, where A = area of each plate and
d = separation between them. Hence, if we write the energy stored per umit volume in the

region between the plates — that is energy density — as P, then

1 ~y2

Pe = Voh?me - Ad (2.16.8)
1(8A ) 2

— 5( y JYE (2.16.9)
. P AARAY

= 1e, d)(E) (2.16.10)

= 2€F (v ¥ =FE) (2.16.11)

Where % = E = electric field between the two plates. Thus the energy stored in the

capacitor can be considered as the energy stored in the electric field between its plates.

We have obtained this equation for a parallel plate capacitor but it is a result in general
and can be used for the electric field of any arbitrary charge distribution.

INustration 10 : A capacitor of 4 UF value is charged to 50 V. The above capacitor is
then connected in parallel to a 2 UF capacitor. Calculate the total energy of the above system.
The second capacitor is not charged prior to its connection with the 4 [F capacitor.

Solution : The energy stored in the capacitor of 4 UF will be

=1 x4 x (502 = 2 x 2500 = 5000 pJ

The two capacitors are connected in parallel. Let g, and g, be the electrical charges on

capacitors C, and C, respectively after connection. If V' is their common potential difference

. ' % o)
th tors. (V' =& = &
across the capacitors. ( C, C2)

4 _ G
q2 CZ
@t+q, G+6

n - G (1)

By the law of conservation of charge.

g, +q,=Q (2)

Where Q is the initial charge
Now, Q = C,V = (4)(50)
= 200 uC
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Putting equation (2) in equation (1) and substituting the value of Q, we have,

200 _ (4+2)

9, ~ 2

. — 200x2 _ 200
= T =3 K

From Equation (2)
g, = 200 - 20

3
400

Calculation of emergy : The energy of the first capacitor

2
4 _ (400) 1 _
2c1—(3) x 5L =222 W

The energy of the second capacitor

2
4 (200)? 1 _
2C, = (T) X axp = 1ML W

The total energy of the system, after combination = 2222 + 1111 = 3333 = WJ

Thus the energy decreased by 5000 — 3333 = 1667 pJ. This energy is dissipated in the
from of heat.

2.17 Dielectric Substances and their Polarisation

Non-conducting materials are called dielectric. Faraday found that when a dielectric is
introduced between the plates of a capacitor, the capacitance of the capacitor is increased. In
order to understand how does this happen, we should know about the effects produced when
a dielectric is placed in an electric field. Dielectric materials are of two types (1) polar and
(2) non-polar.

A dielectric is called a polar dielectric if its molecules possess a permanent dipole moment
(e.g. HC/, H,0O, .... etc.) If the molecules of the dielectric do not possess a permanent dipole
moment, then that dielectric is called a non-polar dielectric (e.g. Hz’ 02, COZ, ... €LC.)

(a) Non-polar Molecule : In a non-polar molecule,
the centre of the positive charge and the centre of the whenE =0 when E #0
negative charge coincide with each other. Hence they do >E,

not possess a permanent dipole moment. Now, when it is e
“—>

placed in a uniform electric field (EO), these centres are
displaced in mutually opposite directions. Hence they now,
possess a dipole moment p = gd, where d = the distance
between centres of positive and negative charges after
being displaced, ¢ = the value of positive or negative
charge (See figure 2.18).

IS W

Il

o
QU

y

Figure 2.18

Thus an electric dipole is induced in it. In other words due to an external electric field a
dielectric made of such molecules is said to be polarised. If the external electric field (EO) is not

very strong, it is found that this dipole moment of molecule is proportional to E)O.

P = QE, 2.17.1)

where o is called the polarisability of the molecule.

From units of ;7) and Eo’ the unit of o is C2m N
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(b) Polar Molecule : A polar molecule possesses a permanent dipole moment 7, but such
dipole moments of different molecules of the substance are randomly oriented in all possible
directions and hence the resultant dipole moment of the substance becomes zero.

Now, on applying an external electric field a torque acts on every molecular dipole.
Therefore, it rotates and tries to become parallel to the electric field. Thus a resultant dipole
moment is produced. In this way the dielectric made up of such molecules is said to be
polarised. Moreover, due to thermal oscillations the dipole moment also gets deviated from being
parallel to electric field. If the temperature is T, the dipoles will be arranged in such an

equilibrium condition that the average thermal energy per molecule (%kBT) balances the

potential energy of dipole (U = —F.EO) in the electric field. At 0 K temperature since the

thermal energy is zero, the dipoles become parallel to the electric field. We shall only discuss
such an ideal situation.
(¢) When there is air (or vacuum) between the charged plates of a capacitor, the electric

G
field between the plates is E, = S—f . (2.17.2)
0
+ —
where O, = value of surface charge density on each plate.
) The charge on these plates is called the free charge, because
e its value can be adjusted at our will (by joining proper battery).
e e Here, the area of each plate is = A. Now on placing a slab

of dielectric material (polar or non-polar) in the region between the
C DD DC+ plates, the polarisation produced by the electric field Eo is shown

in the figure 2.19. We want to find the electric field inside the
dielectric.

It is clear from the Figure that the opposite charges in the
Figure 2.19 Polarisation in  successive dipoles inside the slab cancel the effect of each other,
Dielectric as they are very close to each other and a net (resultant) charge

resides only on the faces of the slab, close to the plates. These

charges are called induced charges or the bound charges or the polarisation charges. The
charge induced on the surface of the slab close to the positive plate is —G,A and that on the

surface close to the negative plate is +G,A, where —G, and +0, are, the surface densities of
the hound charges on the respective surfaces. This induced charges form a dipole. Its dipole
moment is P = (0,A)d 2.17.3)

where, d = thickness of the slab = distance between two plates. (if sides of slab touch the
plates)

Here, Ad = volume of slab = V (2.17.4)
The dipole moment produced per unit volume is called the intensity of polarisation or in
short polarisation (P).
P (0,A)d
P s = G -, @119
Thus the magnitude of polarisation(P) in a dielectric is equal to the surface density of
bound charges (¢,), induced on its surface. The electric field produced by these induced

>
charges is in the direction opposite to the external electric field E ,. Hence, now the resultant

electric field E inside the dielectric can be considered as produced due to (Gf — G).
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Gf_cb

* E =

% (2.17.6)

Thus the net electric field inside the dielectric is less than the applied (external) electric
field. (But recall that net electric field in the conductor was zero.)

Moreover, it is found that if the external electric field (E)) is not very strong, then the
polarisation (P), is proportional to the net electric field (E) inside the dielectric.

ie. P o< E

P =gxE 2.17.7)

where x, = constant, which is called the electric susceptibility of the dielectric medium. It
depends on the nature of dielectric and the temperature. The dielectric obeying P oc E is called
a linear dielectric.

From equation (2.17.7) X, = 7§ 2.17.8)

[¢)
Using E0 = é and P = o, in equation (2.17.6), we get,

gqaEq—P
E= 1— (2.17.9)
0
~ gE = ¢E, — €x,E ("0 From equation 2.17.8 P = g E) (2.17.10)
~ gE + gxE = gE, (2.17.11)
Ee (1 + x,) = Eg, (2.17.12)
80(1 + x,) is called the permittivity(€) of the dielectric medium; ie. € = 80(1 + x,)
(2.17.13)
. Be = Eg, (2.17.14)
E,
. E = eleg (2.17.15)
Here, -

R is called the relative permittivity € of the medium and is also called the dielectric

constant of the medium K. Value of K is always greater than 1.

£

Thus, gy e =K (2.17.16)
_ go(1+x,)

From equations (2.17.13) and (2.17.16), T =

. K=1+x 2.17.17)

e

This equation shows the relation between two electrical properties x, and K of the
dielectric.

Now, equation (2.17.15) can be written as

es]

— 0
E= 2 (2.17.18)
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Thus if the electric field in certain region in the free space is Ej, when a dielecrtic is

placed in that region, the electric field in the dielectric becomes Kt part (i.e., % times), the

value in free space.
Electric Displacement : When a dielectric is placed between the plates of a capacitor, the

Gf Y

net electric field produced in the dielectric is given by E = i , where O, = value of

surface density of free charges, G, = Value of surface density of bound charges.
o -P
€o

* ¢E + P = G (2.17.20)

Since 6, = P, we get E = (2.17.19)

o = . . =
The directions of E and 3 are the same. 8OE + P is called electric displacement D.

- - -
D =¢gE + P (2.17.20)

_)
It is a vector field. Using the definition of D, many equations regarding electric field
become simpler in form. Gauss’ theorem in the presence of a dielectric is written as

$D.ds =g (2.17.22)

where g is only the free charge (it does not include the bound charge). Thus in case of
. . ® ce cay o . - =
dielectric the field related to the free charges is not E, but it is [, that is &E + P.

2.18 Capacitor with a Dielectric

When there is air (or vacuum) between the plates of the parallel plate capacitor, its
. . goA
capacitance is given by C = a4 (2.18.1)

where €, = permittivity of vacuum, A = area of each plate and d = separation between two
plates. Now if the entire region between these plates is filled with a dielectric medium having
permittivity €, then to obtain the formula for its capacitance C', € should be placed in place
of €, in the above formula.

. C' = (2.18.2)
cC _ £
€ =% =K (2.18.3)

where K = dielectric constant of that medium.

. C' = KC (2184)

Thus, putting a medium of dielectric constant K between the plates of the capacitor, its
capacitance becomes K times and thus its capacity to store electric charge also becomes K
times.
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Iiustration 11 : A capacitor consists of three parallel plates of equal area A. The distance
between them is d, and d,. Dielectric material having pemittivity € and €, is present between
the plates. (i) Calculate the capacitance of such a system. (ii) Express this capacitance in terms
of K, and K,.

Solution : As shown in the figure, the two capacitors are connected in series. If C is the
total capacitance, then

1 _1 4, 1 gue= dc =28
C ~c T PHtT 4 MM T g
d d
1 _ T 22
C ~ gA + g,A Cy 5)
_ dig,A+gAd, _ dig, +dyg,
£,6,A> g5, A g E,
£18,A A K K,
= derdp T C T 4 4
& & —
d )
2
& - _ _ T
From K, = % we get € = €K . Similarly €, = € K,, where €, = permittivity of vacuum.
A Ag
© C = =
A L

+
gk, 5K, K, +K2
2.19 Van-De-Graaff Generator

With the help of this machine, a potential difference of a few million (1 million = 10° =
ten lac) volt can be established. By suitably passing a charged particle through such a high
potential difference it is accelerated (to very high velocity) and hence acquires a very high

energy (%mvz). Because of such a high energy they are able to penetrate deeper into the
matter. Therefore, fine structure of the matter can be studied with the help of them. The
principle of this machine is as under. =
Suppose there is a positive charge Q, on an insulated conducting
spherical shell of radius R, as shown in the figure 2.20. At the
centre of this shell, there is a conducting sphere of radius
r(r < R), having a charge gq.
Here the electric potential on the shell of radius R, is

kQ kq
V, = = + 2% (2.19.1)
R R R Figure 2.20
and the potential on the surface of the sphere of radius r, is Van—de—Graaff (
- .k
V. = e« + ‘ (2.19.2)

It is clear from these two equations that the potential on the smaller sphere is more and
the potential difference (p.d.) between them is
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_ kq[%_%] (2.19.3)
Hence, if the smaller sphere is brought in electrical contact with the bigger sphere then the
charge goes from smaller on to the bigger sphere. Thus charge can be accumulated to a very large
amount on the bigger sphere and thereby its potential can be largely increased.
brush ,s25"%ts, /pulley The machine based on this principle made by Van-De-Graaff,
\¢ is called the Van-De-Graaff generator.

pully is kept on the ground. An arrangement is made such that a
pulley  pon-conducting belt moves across two pulleys. Positive charges are
obtained from a discharge tube and are continuously sprayed on
the belt using a metallic brush (with sharp edges) near the lower

Figure 2.21 pulley. This positive charge goes with the belt towards the upper

Van-de-Graaff Generator pulley.

There it is removed from the belt with the help of another brush and is deposited on the shell
(because the potential on the shell is less than that of the belt on the pulley.) Thus a large potential
difference (nearly 6 to 8 million volt) is obtained on the big spherical shell.

[lustration 12 : Q amount of electric charge is residing on a conducting sphere having
radius equal to R,. This sphere is connected to another conducting sphere of radius R, by a
conducting wire. Calculate the electric charge on each of the spheres. The two spheres are
separated by a large distance.

¥ : As shown in the figure 2.21 a spherical shell of a few meter
v ;+ radius, is kept on an insulated support, at a height of a few meters
g M from the ground.

+ conducting . .

i‘ L belt A pully is kept at the centre of the big sphere and another

Solution : Let g, and g, be the electric charge present on the two conducting spheres
after being connected with each other.
Q=9 tgq, 1)

The electric potentials of the two spheres have to be the same, since they are connected
by a conducting wire

kay ke, @ R
-_— . R

= 2
9ht4q R, +R,
% R,
g _ R1+R2
q, R,
R,
-4 = R1+R2Q 3)

Substituting the value of g, in the equation (1), we have

R,
Q=gq + R1+R2Q

This gives ¢, = R R
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[llustration 13 : Find the effective capacitance of the network shown in the figure and
find the charge on each capacitor.

Solution : Here, C2 and C3 are in series. Their equivalent C1| |100 pE
11
CC
. . . v 23 _  200x200
(effective) capacitance is C = C,+C, — 200+200 200 pF 200 pF
1| <l
= 100pF. I I ot
300V
This C' and C, are in parallel connection. Their equivalent Ca | ?—-
capacitance is C"' = C' + C, = 100 + 100 = 200 pF. ]Oorlpl
This C'' and C, are in series. Their Equivalent capacitance is C''' = CTe _ 200x100
. . q p - C%C, T 200+100
200
= 73 PF.

—12
Now the charge supplied by the battery is Q = C'''V = {%JGOO) = 2 x 10°%C.

". charge on C, and C'' are equal and each is equal to 2 X 107%C.

" Charge on C, is Q, = 2 X 108%C = Q" (on C')

Charge on C'' is divided on C' and C,. Since C' and C, are of equal values, that charge
is divided equally on them.

. Charge on C, is Q, = 7Q, = 1 X 10°C = Q"... (on C")

The charge on C' has the same value as on C, and C,.

5 Q,=Q, =1x10°C

[lustration 14 : Find the capacitance of the capacitor shown in the figure. Area of

AB is A. K1’ Kz’ K3 are dielectric constants of respective materials.

L Ke A A B

Solution : We shall use the formula C = % = ;
and also use the formulae for series and parallel connections. % K
Here, the capacitors formed by K, and K, are in parallel
and hence their equivalent capacitance is d

K.e,(A/2) K.&,(A/2) K, K,
— _ 2% 3%o
Co=C, +C = ~@y + ~@n
— ]

_ &A
= LK, + K,

The capacitor formed by k1 is in series connection with this C,. .. The equivalent
capacitance of the entire system is

KigoA [%(K +K )}

c - CCy di2 | 4 2773 _ 24 K(K,+Ky)
C+Cy 7 (KeA A T Td (@K +K
s 1o Vil (K, +K, +K,)

{d/2 }+[ y (K2+K3)}
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‘ Illustration 15 : A capacitor has air between its plates having
separation a. Now a metallic slab of thickness b is placed

between its plates as shown in the figure. Show that now its

. . A . .
capacitance is C = %o 5" Does this value of capacitance depend

—
«—>
o

on the position of the metallic slab between the plates ?

’ Solution : One capacitor is formed in the upper region with
thickness x,. Let its capacitance = C,. Other capacitor is formed

in the lower region with thickness x,. Let its capacitance = C,. In

-
‘ the thickness b, there is metallic slab, hence no capacitor is

T T T formed (because its two surfaces cannot be considered as isolated
’ _ — — le from each other.) Here, C, and C, are in series. If their equivalent
i Ib 1 1 xl X, +
. . L — L 1 _ 4 X _ ATH
‘ + + + Ixz capacitance is C; c = + C, = %A + A~ TgA
‘ - C = 80A
o 5t
. GOA .
But Figure shows that x, + x,=a — b .. C = ot This value does not depend on the

position of the metallic slab. Put it anywhere but (x; + x,) remains constant and only in this
much region capacitor is formed.

Illustration 16 : The area of each plate of a parallel plate capacitor is 100 cm? and the
separation between the plates is 1.0 cm. When there is air between the plates, the capacitor
is charged with a battery of 100 V. Now the battery is removed and a dielectric slab of
thickness 0.4 cm and dielectric constant 4.0 is placed between the plates. (a) Find the
capacitance before the dielectric is introduced. (b) Find the free charge on the plate and the
surface charge density on it. (c) What is the electric field E; in the region between the plate
and the dielectric ? (d) What is the electric field in the dielectric ? (e) What is the potential
difference between two plates after the dielectric is introduced ?

on : A =100 X 10*m% d = 1 x 10m, V, = 100 V

d' =04 x 107%m, K = 4.0
(a) When there is air between the plates, the capacitance

g A (8.85x107%)(100x10™")

Co= 3% = =
1x10
(b) g, = C,V, = (8.85 x 107'%)(100) = 8.85 x 107° C

This is free charge. The surface density of charge is

= 8.85 x 10712 F = 8.85 pF.

4 _ 885x107°
A 100x107*

(c) The electric field between the plate and the dielectric is produced by the charge on the
plate, that is by the free charge.

c = = 8.85 x 10°% C/m?

o 8.85x107°

. E, = = —
07 &  8.85x107'2

= 10000 V/m

76 | Physics-1IT



(d) In the absence of dielectric the electric field at that place would be E,. Now on putting

E
the dielectric there the electric field is E = —X = % = 2500 V/m.

(e) Now, the potential difference (p.d.) between the plates (from V = Ed) is

V'=E(l - 04) X 10 + E(0.4 x 107

10000 (0.6 X 107%) + 2500 X 0.4 x 1072
60 + 10 = 70 V.

Ilustration 17 : A substance has a dielectric constant 2.0 and its dielectric strength is
20 X 10° V/m. It is taken as a dielectric material in a parallel plate copacitor. What should be

the minimum area of its each plate such that its capacitance becomes 8.85 X 1072 UF and it
can withstand a potential difference of 2000 V ?

Solution : K =2; E =20 X 10° V/m , C = (8.85 X 102 X 10° F
V =2000V, A=27?
Charge on capacitor Q = CV = (8.85 X 10_8) (20000 = 17.7 X 107 C

-5
surface density of charge on the plate 0 = % = % C/m?.

If there were air between the plates, the electric field would be E; = %, but here a

E
dielectric is placed. Hence the electric field is E = YO = Keg

17.7x107
(A)(2)(8.85x1071%)

. 20 X 10 = = A =05 m?

If the value of A is smaller than this, E becomes greater than 20 X 10° and dielectric
breackdown occurs. A

Ilustration 18 : Two identical thin rings each of radius R m ;
are kept on the same axis at a distance of R m apart. If charges on ‘
them are Q, C and Q, C respectively, calculate the work done in L
moving a charge Q C from the centre of one ring to that of the other.

Q

Solution :

It is clear from the figure that AO' = BO = VRZ+R? = (J2)R

Centre of each ring is at equal distance = (42 )R from the circumference of the other ring.

. . . 1Y 1%
. Potential at O is V| = ane, R + dne, RN2

1% 19
2 7 4mey R2 4me; R

and potential at O' is V
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o 1 1
. Potential difference AV = V, — V, = Ame R Q, -Q) + 4me R2 [Q, — Q]

1 1
= 4ne,R (Q1 - Qz) - 471:80Rﬁ [Q1 - Qz]

- TR @ - Q)[1- %]

- mR@Q - Q| v

q(Q,-Q,) _
.. Work W = g(AV) = TORZ [%] J
SUMMARY

The information about the work done in taking an electric charge from one point to the
other in the electric field is obtained from the quantities called electric potential and
electric potential energy.

B
Iﬁa_l; is the line-integral of electric field between points A to B and it shows the work
A
done by the electric field in taking a unit positive charge from A and B. Moreover, it does

not depend on the path and fEaTr)' =N

“The work required to be done against the electric field to bring a unit positive charge
from infinite distance to the given point in the electric field, is called the electric potential
(V) at that point”.

P
Electric potential at point P is V= —j_ﬁﬁ;

joule
oulomb

Its dimensional formula is M'L>T>A"!

Absolute value of electric potential has no importance but only the change in it is important.
“The work required to be done against the electric field to bring a given change (g) from
infinite distance to the given point in the electric field is called the electric potential
energy of that charge at that point.”

Its unit is = = volt. Symbolically V = %

P
Up = —qiE-dr = qu

The absolute value of electric potential energy has no importance, only the change in it
is important.

wl,g‘

Electric potential at point P lying at a distance r from a point charge g is Vp =

~>

-
The electric potential at a point at distance r from an electric dipole is V(7) = Ine, 1;_2

.. (for r >> 2a)

ol

Potential on its axis is V = +41t—80 . Potential on its equator is V = 0

r
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Electric potential at a point 7 due to a system of point charges q,, q,, ... g, situated

7 kq
%) - L
at positions r,, r,, ... g, is V = zl—ll?—?)l'
i

The electric potential at point 7, due to a continuous charge distribution is

X 1 p(rhdr!
V(D) = dgy |

- -
volume | y— r'|

The electric potential due to a spherical shell is

A S/ e g
V = Gneg T (for r 2 R) and V = dmeg R (for r £ R)
A surface on which electric potential is equal at all points is called an equipotential

surface. The direction of electric f1e1d is normal to the equipotential surface.

E = % gives the magnitude of electric field in the direction of di . To find E from V,

in general, we can use the equation

0 = [%—Vz+%—;71+%—v ]

The direction of electric field is that in which the rate of decrease of electric potential

with distance (:‘%Y) is maximum, and this direction is always normal to the equipotential

surface.
The electrostatic potential energy of a system of point charges ¢q,, q,, ... g, situated
respectively at A B is

n kqq.
itj
U=Z, where r.. = r. — r
=1 i v J
i<j

The electrostatic potential energy of an electric dipole in an external electric field E), is
= —E)Z = —E p cos0.

When a metallic conductor is placed in an external electric field,

(i) A stationary charge distribution is induced on the surface of the conductor.
(i) The resultant electric field inside the conductor is zero.

(iii) The net electric charge inside the conductor is zero.

(iv) The electric field at every point on the outer surface of conductor is locally
normal to the surface.

(v) The electric potential everywhere inside the conductor is the same constant.

(vi) If there is a cavity in the conductor then, even when the conductor is placed
in an external electric field, the electric field inside the conductor and also inside
the cavity is always zero. This fact is called the electrostatic shielding.

When electric charge is placed on the metallic conductor

(i) The electric field everywhere inside the conductor is zero.

(ii)) That charge is distributed only on the outer surface of the conductor.
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(iii) The electric field on the surface is locally normal, and is given by E =[%] .

(iv) If a charge is placed inside the cavity in the conductor, the electric field in
region which is outside the cavity but in the conductor remains zero.

“A device formed by two conductors insulated from each other is called a capacitor”. Its

L)

capacitance is C = S = constant. The unit of C is coulomb/volt, which is also called

<

L Wb = 107° FaL PR = 0072 F

A
The capacitance of the parallel plate capacitor is C = 807.

If the effective capacitance in the series combination of capacitors is C,

e F =i &
c=g tg te te
If the effective capacitance in the parallel combination of capacitors is C,

C=C +C, +C,+ ..

The energy stored in the capacitor is U = X = == = V_2Q and the energy

U . L S - -
density = energy per unit volume = 5 EE% where E = electric field.

When a dielectric is placed in an external electric field E, polarisation of dielectric occurs
due to electical induction. The electric field produced by these induced charges is in the
direction opposite to the direction of external electric field. Hence the resultant electric

field E, inside the dielectric is less than the external electric field E,. The dipole moment
produced per unit volume is called the intensity of polarisation or in short polarisation

BEi= G

Since P o E, P = gx E. x, is called the electric susceptibility of the dielectric medium.

€,(1 + x,) is called the permittivity € of the dielectric medium. % is called the relative

permittivity of that medium and it is also called the dielectric constant K.

- £
1.e.§=8=K.

E
K=1+x,E= YO' Thus in the dielectric the electric field reduces to the K® part.
=2 - =) 5 0 0 0
D = gE + P is called the electric displacement. Gauss Law in the presence of

dielectric is written as }Bd_; = g, where g is only the net free charge.
When there is air (or vacuum) between the plates of a parallel plate capacitor, the capacitance

A
is C = 8?T.On placing a medium of dielectric constant K, the capacitance is C' = KC. Thus

the capacitance becomes K times, due to the presence of the dielectric.
With the help of Van-De-Graf generator a p.d. of a few million volt can be established.
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EXERCISE

For the following statements choose the correct option from the given options

1.

O.

(1]

For a uniform electric field E) = E({), if the electric potential at x = 0 is zero, then
the value of electric potential at x = + x will be ........ .

(A) x E| (B) —x E, (C) X*E, (D) —x* E,

The line integral of an electric field along the circumference of a circle of radius r, drawn
with a point charge Q at the centre will be .......... .

A) 4n180 % (B) 280 - (C) zero (D) 2mQr

A particle having mass 1 g and electric charge 10 C travels from a point A having
electric potential 600 V to the point B having zero potential. What would be the change
in its kinetic energy ?

(A) =6 x 107 erg B) -6 X 10°°7J

(C) 6 x 106 7J (D) 6 X 107 erg

The area of every plate shown in the Figure is A and the separation between the
successive plates is d. What is the capacitance between points a and b ?

(A) €, A/d ®) 2¢, A/d

: -

(C) 3¢, A/d (D) 4g, A/d

A particle having mass m and charge g is at rest. On applying a uniform electric field
E on it, it starts moving. What is its kinetic energy when it travels a distance y in the
direction of force ?

(A) gE% (B) gEy* (C) gEy (D) g°Ey

A parallel plate capacitor is charged and then isolated. Now a dielectric slab is introduced
in it. Which of the following quantities will remain constant ?

(A) Electric charge Q (B) Potential difference V
(C) Capacitance C (D) Energy U.

A moving electron approaches another electron. What will happen to the potential energy
of this system ?

(A) will remain constant (B) will increase
(C) will decrease (D) may increase or decrease

Energy of a charged capacitor is U. Now it is removed from a battery and then is
connected to another identical uncharged capacitor in parallel. What will be the energy of
each capacitor now ?

@ 7 ®) U © Y o Y

A uniform electric field is prevailing in Y-direction in a certain region. The co-ordinates
of points A, B and C are (0, 0), (2, 0) and (0, 2) respectively. Which of the following
alternatives is true for the potentials at these points ?

(A) V, =V, V, >V, B)V,>V,V, =V
© V, <V, V,=V

C

. D) V, =V, V, <V,

Electrostatic Potential and Capacitance 81



82

The capacitance of a parallel plate capacitor formed by the circular plates of diameter 4.0
cm is equal to the capacitance of a sphere of diameter 200 cm. Find the distance
between two plates.

A 2x10%m @B 1x10*m () 3x10*m (D) 4 X 10* m

The capacitance of a variable capacitor joined with a battery of 100 V is changed from
2 UF to 10 WF. What is the change in the energy stored in it ?

(A)2x10%2] @B)25%x102J (C)65%x102J (D) 4 x 1027

A parallel plate capacitor is charged with a battery, and then separated from it. Now if
the distance between its two plates is increased, what will be the changes in electric
charge, potential difference and capacitance respectively ?

(A) remains constant, decreases, decreases

(B) increases, decreases, decreases

(C) remains constant, decreases, increases

(D) remains constant, increases, decreases

6 identical capacitors are joined in parallel and are charged with a battery of 10 V. Now
the battery is removed and they are joined in series with each other. In this condition
what would be the potential difference between the free plates in the combination ?

(A) 10V (B) 30 v © 60 V (D) % \'

Six identical square metallic plates are arranged as in figure. Length of each plate is /.
The capacitance of this arrangement would be .......... .

2 2
a) 2 ®) 5
© 358 @) o
3d

In the following table, the area of plates and separation between the plates are given. In
the nearby Figure, g — V graphs for them are shown. Determine which graph is for

which capacitor.

Capacitor area separation
qf C, A d
C, 2A d
C, A 2d

£ 1 A1 - C, 2 - C, 3 - C

' ®B) 1 - C 2 - C, 3 > C,

'3 © 1 - C, 2 - C, 3 > C,

: >V D)1 - C, 2 - C 3 = C,

A V—x graph for an electric field on X-axis is shown in the figure. In which region is
the magnitude of electric field maximum ?

A
A%

A) A (B) B

© C (D) D

®

©.

©

(Y Sy
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The distance between electric charges Q C and 9Q C is 4 m. What is the electric
potential at a point on the line joining them where the electric field is zero ?

(A) 4 kQ V (B) 10 kQ V © 2kQV (D) 25 kQ V

If a capacitor having capacitance of 600 UF is charged at a uniform rate of
50 uC/s, what is the time required to increase its potential by 10 volts.

(A) 500 s (B) 6000 s ©) 12 s D) 120 s

Two metallic spheres of radii R, and R, are charged. Now they are brought into contact
with each other with a conducting wire and then are separated. If the electric fields on
their surfaces are E, and E, respectively, E, / E, = ... .

(A) R,/ R, (B) R,/ R, (C) R/ R}? D) R2/ R}

For a capacitor the distance between two plates is 5x and the electric field between them
is E. Now a dielectric slab having dielectric constant 3 and thickness x is placed
between them in contact with one plate. In this condition what is the p.d. between its two
plates ?

13E 9E
) == (B) 15 E, x © 7E, x @) =&

In the figure area of each plate is A and the distance between consecutive plates is d.
What is the effective capacitance between points A and B ?

(A) eA/d (B) 2¢,A/d A y
3 B
(C) 3gAld (D) 4gAld
4
ANSWERS
.B) 2 (C) 3(C) 4 @B 5 (@ 6 (A
7.B) 8 (C) 9. (A 10. B 1. D) 12 (D)
3. (C) 14. B) 15 (C) 16. (C) 17. (A) 18. (D)
19. (A) 20. (A) 21. (O

Answer the following questions in brief :

")
O.

What is line integral of electric field ? What does it indicate ?

If the electric potential at point P is V, what is the electric potential energy of charge
q at this point ?

What is the electric potential at a point on the equator of an electric dipole ?

What is electic potential gradient ? Give its unit.

Electric field is always .......... to the equipotential surface and in a direction in which the
rate of decrease of potential is .......... .

Give the formulae for the equivalent (effective) capacitance of capacitors in series and parallel
combinations.

How does the energy density associated with an electric field depend on the value of
electric field ?

What is meant by a non-polar molecule ?
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Define intensity of polarisation (or in short polarisation) P.

Write the formula showing the relation between x, and P.

11. Electric field at a point in free space is 100 N/C. What would be the electric field in
a medium with dielectric constant 5, placed at that place ?

I2. What is the meaning of the relative permittivity € of a dielectric medium ?

State theC use of Van-de-Graf generator.

14. What is the equivalent capacitance between points A and B in
4 C the figure ? (Hint : The last capcitor on right side is short
circuited. .. it is not effective)

C
BO H [Ans : C/2]
J IC
15. 11 What is the equivalent capacitance between points A and
J_ c B shown in the figure ? (Hint : The last capcitor on
Ao— —o 13 . . . . . . .
T right side is short circuited. .. it is not effective)
|| [Ans : 2C]

Answer the following questions
I. Show that the work done by the electric field in moving a unit positive charge from one
point to the other point in an electric field depends only on the positions of those two
points and not on the path joining them.
Define electric potential and give the formula corresponding to it. Write its units and
dimensions.
3. Define electric potential and obtain the formula for the electric potential due to a point charge.
{.  Derive the formula for the electric potential due to an electric dipole at a far distant point
from it.
What is an equipotential surface ? Show that the direction of the electric field at a given
point is normal to the equipotential surface passing through that point.
Obtain the formula which can give electric field from the electric potential.
Derive the formula for the electric potential energy of an electric dipole in a uniform
electric field.
8. Explain in short the effects produced inside a metallic conductor placed in an external
electric field.
What is a capacitor ? Give the definition, and units of capacitance. On which factors
does the value of capacitance depend ? Give the symbol of capacitor.
L0. Obtain the formula for the equivalent (effective) capacitance in the series / parallel
combination of capacitors.
Obtain the formula for the capacitance of a parallel plate capacitor.
1: Obtain the formula for the energy, stored in the capacitor and also for the energy density.
13. Explain the polarisation produced in the dielectric placed between the two plates of a

parallel plate capacitor and obtain the formula P = G,.
The resultant electric field inside a dielectric placed between two plates of a capacitor is

6.—C E
E = %. Hence obtain E = ?0 , where E0 = external electric field on the dielectric.
0
) A ) . . =
Using E = c obtain the formula for the electric displacement D. State the
0

importance of D.
16. Obtain the formula showing the principle of Van-De-Graaff generator.
17. Only draw the Figure and explain the working of Van-de-Graf generator.
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Solve the following examples

q, = 2C and g, = =3 C charges are placed at (0, 0) and (100, O)m points respectively.
At which point(s) on the X-axis is the electrical potential zero ?

[Ans. : 40m, —200 m]
Two metallic spheres having radii @ and b, are placed very far from each other and are
joined by a conducting wire. The total charge on them is Q. Find (i) the charge on each
sphere and (ii) potential on each sphere.

o _ aQ _ b - - kQ
[.An."_i.-Qa_ a+b’ Qb_ a+b’Va_Vb_ a+b]

In a certain region the electric potential is given by the formula V(x, y, z) =
2x%y + 3y’z — 4z*x. Find the components of electric field and the vector electric field at
point (1, 1, 1) in this field.

[Ans. : E, =0, E, = =11 unit, E_ = 13 units, E = =11 + 13£ unit]
A spherical drop of water has 3 X 107 C amount of charge residing on it. 500 V

electric potential exists on its surface. Calculate the radius of this drop. If eight such
drops (Having identical charge and radii) combine to form a single drop, calculate the

electric potential on the surface of the new drop. kK = 9 x 10° SL
[Ans. : Radius of the first drop = 0.54 cm,
Electric Potential on the new drop = 2000 V]
Q amount of electric charge is present on the surface of a sphere having radius R.

2
Calculate the total energy of the above system. [Ans. : 1 Q]

Note : The above example can be calculated in three different ways, (1) By multiplying
the electric charge with the average value of the initial and the final electric potential, (2)
By considering the above system to be a capacitor and calculating the energy of the
capacitor and (3) By considering an electric charge g and taking the integration of the
work done to increase the above charge by an amount dg. Use any one method.

O is the uniform charge density present on the surface of a

semi-sphere of radius R. Derive the formula for the electric

potential at the centre.

O<——R—->
e . RO o
[Ans. : 280] c
Consider A, B and C to be the co-centric shells of metal. Their radii
are a, b and c respectively (@ < b < ¢). Their surface charge "
densities are O, —CG and O respectively. Calculate the electric s
potential on the surface of shell A.
[Ans. : %[a - b+ c]]
Calculate the equivalent capacitance between points A ,(,:1 it S
and B of the connections of capacitors shown in the 1'“'1; 3|IJL[F
figure. [Ans. : % pFp A% CEMF =G c; B

(1) A capacitor of 900 pF is charged with the help of 100 V battery. Calculate the
electric potential energy of this capacitor. (2) The above capacitor is disconnected from
the battery and is connected to another identical uncharged capacitor. What will be the

total energy of the system ? [Ans. : (1) 4.5 X 10¢ J (2) 2.25 x 107 J]
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10.

C) =

13.

_—
N\

o [

G

Calculate the equivalent capacitance for the connection of
capacitors shown in the figure and the electric charge present
on each of the capacitors. The value of each capacitance is
10 UE

[Ans. : Equivalent capacitance = 13.3 UWF Q, = Q, = Q3 =
1.7 x 107 C, Q, = 50 x 107 (]

Find the equivalent capacitance between A and B in the
circuit shown in the Figure. C, =C, =1 pF; C, =C, = 2 UE

[Ans. : 3 UF]

The area of each plate shown in the figure is A and the
distance between consecutive plates is d. What is the equivalent
capacitance between points A and B ?

soA

[Al’lS. H T]

(8] [O%}

AThe area of each plate shown in the figure is A and the

distance between consective plates is d. What is the equivalent
capacitance between points A and B ?

g,A
[Ans. : OT]

W
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